IMPACT OF CHATBOT USER’S DRIVING POWER AND CHATBOT DESIGN ON CUSTOMER EXPERIENCE: THE CASE OF TOURISM SERVICE BUSINESSES IN BANGKOK METROPOLITAN AREA
แรงผลักดันของผู้ใช้บริการแชทบอทและการออกแบบแชทบอทต่อประสบการณ์การใช้บริการแชทบอทของลูกค้า: กรณีธุรกิจบริการท่องเที่ยวในเขตกรุงเทพมหานครและปริมณฑล
Keywords:
แชทบอท, แรงผลักดันของผู้ใช้บริการแชทบอท, การออกแบบแชทบอท, คุณภาพการปฏิสัมพันธ์, ประสบการณ์ลูกค้า, Chatbot, Chatbot user’s driving power, Chatbot design, Interaction quality, Customer experienceAbstract
This study aims to investigate the factors influencing chatbot users' driving power and the design of chatbots that impact customer experience, as well as the moderating effect of interaction quality between these elements. A sample of 400 customers with experience using chatbot services in tourism businesses within the Bangkok metropolitan area was surveyed using a questionnaire as the data collection tool. The data were analyzed using descriptive and inferential statistics, including mediation analysis and multiple regression analysis. The study found that, within the overall tourism service industry, the design factors of chatbots positively influence the quality of interactions and customer experience, with a statistically significant p-value of less than 0.001. The regression coefficients for chatbot design affecting interaction quality and customer experience were 0.670 and 0.588, respectively. Furthermore, the quality of interactions—specifically, attitudes towards chatbots and their problem-solving capabilities—also positively impacts customer experience, again with a statistically significant p-value of less than 0.001. The regression coefficients for attitudes towards chatbots and their problem-solving capabilities were 0.326 and 0.193, respectively. In the hotel and accommodation sector, it was determined that the user’s driving forces behind chatbot usage and design positively affect interaction quality, with a statistically significant p-value of less than 0.001. The regression coefficients for these user’s driving forces were 0.036 and 0.731, respectively. Additionally, the design factors of chatbots positively influence customer experience, with a regression coefficient of 0.641 and a statistically significant p-value of less than 0.001. Moreover, the quality of interaction—considering attitudes towards chatbots, the expertise of chatbot interactions, and their problem-solving capabilities—also positively impacts customer experience, with a statistically significant p-value of less than 0.001. The regression coefficients for attitudes towards chatbots, expertise in chatbot interactions, and problem-solving capabilities were 0.309, 0.067, and 0.213, respectively. Finally, in the context of other types of tourism services, the design factors of chatbots were found to positively affect both the quality of interaction and customer experience, with a statistically significant p-value of less than 0.004. The regression coefficients for chatbot design affecting interaction quality and customer experience were 0.583 and 0.555, respectively. Notably, only the quality of interaction in terms of attitudes towards chatbots significantly and positively affects customer experience, with a p-value of less than 0.001 and a regression coefficient of 0.334. In the analysis of mediating variables, it was determined that the quality of interaction serves as a mediating variable between chatbot design and customer experience, with a statistically significant p-value of 0.05 across all business groups. The findings of this research underscore the importance of both chatbot design and the quality of interaction in shaping attitudes towards chatbots, which in turn influence customer experience in services provided by chatbots within the tourism sector. Additionally, hotel and accommodation businesses should prioritize understanding the motivations of chatbot users, alongside focusing on chatbot design and the quality of interaction, to enhance attitudes towards chatbots.Downloads
References
การท่องเที่ยวแห่งประเทศไทย (2564). โครงการพัฒนาศักยภาพผู้ประกอบการท่องเที่ยวยุคดิจิทัล. ค้นจาก
https://www.empoweringtechtourism.com/ innovation/ discover
ธนาคารพัฒนาเอเชีย (2567). Smart Tourism Ecosystem Development Readiness in Southeast Asia. ค้นจาก https://www.adb.org/sites/ default/ files/ publication/ 963151/ adb-brief-296-smart-
tourismecosystem-southeast-asia.pdf
Araujo, T. (2018). Living up to the chatbot hype: The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Computers in Human Behavior, 85, 183-189. https://doi.org/https://doi.org/10.1016/ j.chb.2018.03.051
Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. https://doi.org/https://doi.org/10.1016/ j.tele.2020.101473
Benchhiba, S. M. (2020). Customer Satisfaction with Virtual Assistance in a Hospitality Context.
Bleier, A., Harmeling, C. M., & Palmatier, R. W. (2018). Creating Effective Online Customer Experiences. Journal of Marketing, 83(2), 98-119. https://doi.org/10.1177/ 0022242918809930
Cheng, Y., & Jiang, H. (2020). How Do AI-driven Chatbots Impact User Experience? Examining
Gratifications, Perceived Privacy Risk, Satisfaction, Loyalty, and Continued Use. Journal of
Broadcasting & Electronic Media, 64. doi:10.1080/ 08838151.2020.1834296
Cochran, W. G. (1977). Sampling Techniques. John Wiley & Sons.
Dong, B., Evans, K. R., & Zou, S. (2008). The effects of customer participation in co-created service recovery. Journal of the Academy of Marketing Science, 36(1), 123-137. https://doi.org/10.1007/ s11747-007-0059-8
Eser, A. (2024). Key Chatbots In Hospitality Industry Statistics: Faster Responses, Cost Savings.Retrieved from https://worldmetrics.org/chatbots-in-hospitality-industry-statistics/
Gao, J., Ren, L., Yang, Y., Zhang, D., & Li, L. (2022). The impact of artificial intelligence technology
stimulion smart customer experience and the moderating effect of technology readiness.
InternationalJournal of Emerging Markets, 17(4), 1123-1142. doi:10.1108/ IJOEM-06-2021-0975
Gentile, C., Spiller, N., & Noci, G. (2007). How to Sustain the Customer Experience:: An Overview of Experience Components that Co-create Value With the Customer. European Management Journal, 25(5), 395-410. https://doi.org/https://doi.org/10.1016/ j.emj.2007.08.005
Heidenreich, S., & Handrich, M. (2015). Adoption of technology-based services: the role of customers’ willingness to co-create. Journal of Service Management, 26(1), 44-71. https://doi.org/10.1108/ JOSM-03-2014-0079
Kushwaha, A. K., Kumar, P., & Kar, A. K. (2021). What impacts customer experience for B2B enterprises on using AI-enabled chatbots? Insights from Big data analytics. Industrial Marketing Management, 98, 207-221. https://doi.org/https://doi.org/10.1016/ j.indmarman.2021.08.011
Lu, Y., Zhang, L., & Wang, B. (2009). A multidimensional and hierarchical model of mobile service quality. Electronic Commerce Research and Applications, 8(5), 228-240. https://doi.org/https://doi.org/10.1016/ j.elerap.2009.04.002
Oxford Economics. (2015). Global Talent Trends and Issues for the Travel and Tourism Sector. Retrieved from http://hdl.voced.edu.au/ 10707/ 375811.
Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (Vol. 82).
TATApplication. (2562). ทดสอบแชทคุยกับ “น้องสุขใจ” Chatbot ผ่านแอปพลิเคชัน Amazing Thailand. https://medium.com/ @tatapplication2019/ ทดสอบแชทคุยกับ-น้องสุขใจ-chatbot-4ab9974c4ba9
Uedufy. (2024). How To Run Mediation Analysis in SPSS [2 Methods]. https://uedufy.com/ how-to-run-mediation-analysis-in-spss/ .
Verhoef, P. C., Lemon, K. N., Parasuraman, A., Roggeveen, A., Tsiros, M., & Schlesinger, L. A. (2009). Customer Experience Creation: Determinants, Dynamics and Management Strategies. Journal of Retailing, 85(1), 31-41. https://doi.org/https://doi.org/10.1016/ j.jretai.2008.11.001
Vietjet. (2565). คู่มือการใช้งาน AMY Chatbot อย่างง่าย ไม่ว่าความช่วยเหลือไหน ก็บอก AMY เลย! https://www.facebook.com/ VietJetThailand/ posts/ 6043968062299021/ ?paipv=0&eav=Afaftm8F6ay1A6cQ2mSkCH4pByePpDZRPsKxlVqiDhCYB2cZbvgLAFyVWRXzlp4t0ks&_rdr
Weiss, A., Bernhaupt, R., Lankes, M., & Tscheligi, M. (2009). The USUS Evaluation Framework for human-Robot Interaction. Proc. of AISB 09, January 2009, 1-9. https://www.researchgate.net/ publication/ 313559458_The_USUS_evaluation_framework_for_human-robot_interaction
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 วารสารบริหารธุรกิจศรีนครินทรวิโรฒ: Srinakharinwirot Business Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
วารสารบริหารธุรกิจศรีนครินทรวิโรฒ ยินดีรับบทความวิจัยและบทความทางวิชาการด้านบริหารธุรกิจ เพื่อพิจารณาตีพิมพ์เผยแพร่ในวารสาร ซึ่งทัศนะและข้อคิดเห็นใดๆ ในวารสารฯ ถือเป็นความคิดเห็นและความรับผิดชอบโดยตรงของผู้เขียน มิใช่เป็นความคิดเห็นและความรับผิดชอบใดๆ ของคณะบริหารธุรกิจเพื่อสังคม มหาวิทยาลัยศรีนครินทรวิโรฒ ผู้ประสงค์จะนำบทความหรือบทวิจารณ์ใดๆ ไปเผยแพร่ จะต้องได้รับการอนุญาตจากวารสารเป็นลายลักษณ์อักษร ลิขสิทธิ์บทความที่เผยแพร่ทั้งหมดเป็นของวารสารบริหารธุรกิจศรีนครินทรวิโรฒ