Effect of Saliva Storage Conditions on Bacterial DNA Quantification by Real-time Polymerase Chain Reaction
Keywords:
saliva sample storage, bacterial DNA, Real-time Polymerase Chain ReactionAbstract
Objective: This research aimed to study the effects of temperature and duration of saliva samples storage on quantification of bacterial DNA by Real-time polymerase chain reaction (Realtime PCR) Materials and Methods: Human saliva samples were collected from 3 healthy volunteers, aliquoted into microcentrifuge tubes and stored in the following conditions; centrifuged immediately before storing at -80oC, kept at room temperature, on ice, or dry ice for 6 hours, 24 hours or 120 hours. Genomic DNA was extracted for quantitative analysis of total bacteria by Real-time PCR. Results: Absolute quantitative real-time PCR showed that concentrations of bacterial DNA from saliva samples stored at almost every condition which were stored at room temperature for 120 hours, on ice for every duration, or on dry ice for 6 or 24 hours were similar to that of the control, saliva centrifuged and frozen immediately after collection. However, bacterial DNA concentration from saliva stored at room temperature for 6 or 24 hours was significantly higher than that of the control. In contrast, the concentration of DNA from saliva stored on dry ice for 120 hours was significantly lower than that of the control. Conclusion: Temperature and duration had effects on bacterial DNA quantity. Saliva storage at room temperature within 24 hours had increasing bacterial DNA as quantify by Real-time PCR. Saliva storage on ice and dry ice could maintain bacterial DNA similar to sample centrifugation immediately and then frozen at -80oC. But long duration of storage, 120 hours, would decrease bacterial quantity.Downloads
References
Jung JY, Yoon HK, An S, Lee JW, Ahn ER, Kim YJ, et al. Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva. Sci Rep. 2018;8(1):10852. doi: 10.1038/s41598-018-29264-2.
Shinde DB, Mahore JG, Giram PS, Singh SL, Sharda A, Choyan D, et al. Microbiota of Saliva: A Non-invasive Diagnostic Tool. Indian J Microbiol. 2024;64(2):328-42.
Noruzpour A, Gholam-Mostafaei FS, Looha MA, Dabiri H, Ahmadipour S, Rouhani P, et al. Assessment of salivary microbiota profile as a potential diagnostic tool for pediatric celiac disease. Sci Rep. 2024;14(1):16712. doi: 10.1038/s41598-024-67677-4.
Zhou X, Hao Y, Peng X, Li B, Han Q, Ren B, et al. The Clinical Potential of Oral Microbiota as a Screening Tool for Oral Squamous Cell Carcinomas. Front Cell Infect Microbiol. 2021;11: 728933. doi:10.3389/fcimb.2021.728933.
Lim Y, Totsika M, Morrison M, Punyadeera C. The saliva microbiome profiles are minimally affected by collection method or DNA extraction protocols. Sci Rep. 2017;7(1):8523. doi:10.1038/s41598-017-07885-3.
Nemoda Z, Horvat-Gordon M, Fortunato CK, Beltzer EK, Scholl JL, Granger DA. Assessing genetic polymorphisms using DNA extracted from cells present in saliva samples. BMC Med Res Methodol. 2011;11:170. doi: 10.1186/1471-2288-11-170.
do Nascimento C, dos Santos JN, Pedrazzi V, Pita MS, Monesi N, Ribeiro RF, et al. Impact of temperature and time storage on the microbial detection of oral samples by Checkerboard DNA-DNA hybridization method. Arch Oral Biol. 2014;59(1):12-21.
Durdiakova J, Kamodyova N, Ostatnikova D, Vlkova B, Celec P. Comparison of different collection procedures and two methods for DNA isolation from saliva. Clin Chem Lab Med. 2012;50(4):643-7.
Ng DP, Koh D, Choo SG, Ng V, Fu Q. Effect of storage conditions on the extraction of PCR-quality genomic DNA from saliva. Clin Chim Acta. 2004;343(1-2):191-4.
Hata S, Hata H, Miyasawa-Hori H, Kudo A, Mayanagi H. Quantitative detection of Streptococcus mutans in the dental plaque of Japanese preschool children by real-time PCR. Lett Appl Microbiol. 2006;42(2):127-31.
Bradshaw DJ, Homer KA, Marsh PD, Beighton D. Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology. 1994;140(12):3407-12.
Wickström C, Herzberg MC, Beighton D, Svensäter G. Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology. 2009;155(9):2866-72.
Byers HL, Tarelli E, Homer KA, Beighton D.Isolation and characterisation of sialidase from a strain of Streptococcus oralis. J Med Microbiol. 2000;49(3):235-44.
Palmer LJ, Chapple ILC, Wright HJ, Roberts A, Cooper PR. Extracellular deoxyribonuclease production by periodontal bacteria. J Periodontal Res. 2012;47(4):439-45.
Konečná B, Gaál Kovalčíková A, Pančíková A, Novák B, Kovaľová E, Celec P, et al. Salivary Extracellular DNA and DNase Activity in Periodontitis. Appl. Sci. 2020;10(21):7490. doi. org/10.3390/app10217490.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Srinakharinwirot University Dental Journal (E-ISSN 2774-0811)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เจ้าของบทความต้องมอบลิขสิทธิ์ในการตีพิมพ์แก่วิทยาสาร โดยเขียนเป็นลายลักษณ์อักษรแนบมาพร้อมบทความที่ส่งมาตีพิมพ์ ตามแบบฟอร์ม "The cover letter format" รวมทั้งต้องมีลายมือชื่อของผู้เขียนทุกท่านรับรองว่าบทความดังกล่าวส่งมาตีพิมพ์ที่วิทยาสารนี้แห่งเดียวเท่านั้น