Human Osteoclasts Enhance Osteogenic Differentiation of Bone Stromal Cells from Mandibular Tori
Keywords:
Bone Mineralization, Osteoblast, Osteoclast, Osteoprotegerin, RANK LigandAbstract
Objective: To determine the effect of human osteoclasts on osteogenic differentiation of bone stromal cells via the receptor activator of nuclear factor kappa B (RANK)-RANK ligand (RANKL) reverse signaling. Materials and Methods: Human peripheral blood mononuclear cells were cultured with stimulating factors until they became multinucleated mature osteoclasts. After being identified for the characteristics of mature osteoclasts, their conditioned medium (OC-CM) was collected. Bone stromal cells harvested from mandibular tori of four patients were treated with OC-CM prior to assessments of osteogenic gene expressions, differentiation, and biomineralization. Both the osteoprotegerin (OPG)-pretreated bone stromal cells and the conditioned medium from GW4869-treated mature osteoclasts (GW-OC-CM) were analyzed for suppression of osteogenic induction in order to investigate the inducible effect of OC-CM. Results: The OC-CM significantly upregulated expressions of osteogenic genes and enhanced differentiation and biomineralization of bone stromal cells (p < 0.05). Pretreatment with OPG, a decoy receptor of RANKL, significantly reduced the inducible effects of OC-CM (p < 0.05). Similarly, the upregulated expressions and enhanced biomineralization were also significantly diminished bytreatment with GW-OC-CM (p < 0.05). Conclusion: Mature osteoclasts can induce osteogenic differentiation of bone stromal cells possibly via the RANK-RANKL reverse signaling.Downloads
References
Yasuda H. Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab. 2021;39(1):2-11.
Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561(7722):195-200.
Zhang S, Wang X, Li G, Chong Y, Zhang J, Guo X, et al. Osteoclast regulation of osteoblasts via RANK‑RANKL reverse signal transduction in vitro. Mol Med Rep. 2017;16(4):3994-4000.
Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A. 2008;105(52):20764-9.
Stessuk T, Husch J, Hermens IAT, Hofmann S, van den Beucken JJJP. Osteogenic differentiation driven by osteoclasts and macrophages. J Immunol Regene Med. 2021;12:100044. doi: 10.1016/j.regen.2021.100044.
Liang M, Yin X, Zhang S, Ai H, Luo F, Xu J, et al. Osteoclast-derived small extracellular vesicles induce osteogenic differentiation via inhibiting ARHGAP1. Mol ther Nucleic acids. 2021;23:1191-203. doi: 10.1016/j.omtn.2021.01.031.
Honma M. The potential of RANKL reverse signaling as a novel pharmacological target. Nihon Yakurigaku Zasshi. 2023;158(3):253-7.
Andersen TL, Abdelgawad ME, Kristensen HB, Hauge EM, Rolighed L, Bollerslev J, et al. Understanding coupling between bone resorption and formation: are reversal cells the missing link? Am J Pathol. 2013;183(1):235-46.
Huynh N, VonMoss L, Smith D, Rahman I, Felemban MF, Zuo J, et al. Characterization of Regulatory Extracellular Vesicles from Osteoclasts. J Dent Res. 2016;95(6):673-9.
Liu M, Sun Y, Zhang Q. Emerging Role of Extracellular Vesicles in Bone Remodeling. J Dent Res. 2018;97(8):859-68.
Matsuoka K, Park KA, Ito M, Ikeda K, Takeshita S. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Miner Res. 2014;29(7):1522-30.
Wang N, Wang H, Chen J, Wang F, Wang S, Zhou Q, et al. ACY‑1215, a HDAC6 inhibitor, decreases the dexamethasone‑induced suppression of osteogenesis in MC3T3‑E1 cells. Mol Med Rep. 2020;22(3):2451-9.
Liu M, Xu Z. Berberine promotes the proliferation and osteogenic differentiation of alveolar osteoblasts through regulating the expression of mir-214. Pharmacology. 2021;106(1-2):70-8.
Ma Q, Liang M, Wu Y, Ding N, Duan L, Yu T, et al. Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J Biol Chem. 2019;294(29):11240-7.
Bhartiya D. Are Mesenchymal Cells Indeed Pluripotent Stem Cells or Just Stromal Cells? OCT-4 and VSELs Biology Has Led to Better Understanding. Stem Cells Int. 2013;2013:547501. doi: 10.1155/2013/547501.
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, et al. Post-transcriptional regulatory crosstalk between microRNAs and canonical TGF-β/BMP signalling cascades on osteoblast lineage: a comprehensive review. Int J Mol Sci. 2023;24(7):6423. doi: 10.3390/ijms24076423.
Liang M, Yin X, Zhang S, Ai H, Luo F, Xu J, et al. Osteoclast-derived small extracellular vesicles induce osteogenic differentiation via inhibiting ARHGAP1. Mol Ther Nucleic Acids. 2021;23:1191-203. doi: 10.1016/j.omtn.2021.01.031.
Liu M, Sun Y, Zhang Q. Emerging role of extracellular vesicles in bone remodeling. J Dent Res. 2018;97(8):859-68.
Shi K, Lu J, Zhao Y, Wang L, Li J, Qi B, et al. MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone. 2013;55(2):487-94.
Shen F, Huang X, He G, Shi Y. The emerging studies on mesenchymal progenitors in the long bone. Cell Biosci. 2023;13(1):105. doi: 10.1186/s13578-023-01039-x.
Aubin JE. Chapter 4 - Mesenchymal Stem Cells and Osteoblast Differentiation. In: Bilezikian JP, Raisz LG, Martin TJ, editors. Principles of Bone Biology. 3rded. San Diego: Academic Press; 2008. p. 85-107.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Srinakharinwirot University Dental Journal (E-ISSN 2774-0811)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เจ้าของบทความต้องมอบลิขสิทธิ์ในการตีพิมพ์แก่วิทยาสาร โดยเขียนเป็นลายลักษณ์อักษรแนบมาพร้อมบทความที่ส่งมาตีพิมพ์ ตามแบบฟอร์ม "The cover letter format" รวมทั้งต้องมีลายมือชื่อของผู้เขียนทุกท่านรับรองว่าบทความดังกล่าวส่งมาตีพิมพ์ที่วิทยาสารนี้แห่งเดียวเท่านั้น