Association between Bifidobacterium, Fusobacterium nucleatum and Type of Root Canal Infections in Primary Teeth and Clinical Symptom: A Quantitative Real-Time PCR Analysis

Authors

  • Panthita Piyasoonthorn Pediatric dentist, Ranong Hospital, Ranong 85000, Thailand.
  • Kemthong Mitrakul Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, 6, Yothi Road, Ratchathewi District, Bangkok 10400, Thailand

Keywords:

Root canal infection, Pulpectomy, Primary teeth, Real-Time PCR, F. nucleatum, Bifidobacterium

Abstract

Objective: To quantify levels of Bifidobacterium and Fusobacterium nucleatum in two typesof primary teeth root canal which are irreversible pulpitis and pulp necrosis and to analyze theassociation between these bacteria, clinical symptoms and radiographic findings. Materials and Methods: Subjects were chosen from patients aged 2-10 years old who cameto the Pediatric Dental Clinic, Faculty of Dentistry, Mahidol University and needed pulpectomy treatmentfor this cross-sectional study. Pulpal diagnosis based on the American Academy of PediatricDentistry. Recorded clinical signs and symptoms including pre-operative radiographs before treatment.Collected fluid inside root canals using paper points by aseptic technique. Performed DNA extractionand quantitative real-time PCR using fluorescent dye (SYBR green) using specific primers to identifiedBifidobacterium and F. nucleatum. Results: Total of 134 primary teeth was selected. Subjects consisted of 70 males (52%) and 64 females (48%). Mean (± standard deviation) age was 5.25 ± 1.37 years old. Sixty eight samples were diagnosed with irreversible pulpitis (51%) and 66 with pulp necrosis (49%). Amounts of total bacteria (p ≤ 0.001), F. nucleatum (p = 0.025) and Bifidobacterium (p = 0.183) in the pulp necrosis group were higher than in the irreversible pulpitis group. The ratio of Bifidobacterium to total bacteria was higher in irreversible pulpitis group (p = 0.016). There was a correlation between levels of F.nucleatum and swelling at gingiva area present clinically. Conclusion: Levels of total bacteria and F. nucleatum were significantly higher in pulpnecrosis group. F. nucleatum was correlated with swelling at gingiva area present clinically.

Downloads

Download data is not yet available.

Author Biography

Kemthong Mitrakul, Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, 6, Yothi Road, Ratchathewi District, Bangkok 10400, Thailand

correspondence

References

Academy of Pediatric Dentistry. Guideline on Caries-risk Asessment and Management for Infants, Children, and Adolescents. Pediatr Dent (Reference Manual). 2012-2013;34:118-25.

Zemaitiene M, Grigalauskiene R, Andruskeviciene V, et al. Dental caries risk indicators in early childhood and their association with caries polarization in adolescence: a crosssectional study. BMC Oral Health. 2017;17:2. doi:10.1186/s12903-016-0234-8.

Braga MM, Martignon S, Ekstrand KR, et al. Parameters associated with active caries lesions assessed by two different visual scoring systems on occlusal surfaces of primary molars a multilevel approach. Community Dent Oral Epidemiol. 38(2010):549-558. doi: 10.1111/j.1600-0528.2010.00567.x.

Academy of Pediatric Dentistry. Guideline on Pulp Therapy for Primary and Immature Permanent Teeth. Pediatr Dent (Reference Manual). 2022;32:399-407.

Chalmers NI, Oh K, Hughes CV, et al. Pulp and plaque microbiotas of children with Severe early childhood caries. J Oral Microbiol. 2015;7:25951. doi: 10.3402/jom.v7.25951.

Chhour KL, Nadkarni MA, Byun R, et al. Molecular analysis of microbial diversity in advanced caries. J Clin Microbiol. 2005;43:843-9. doi: 10.1128/JCM.43.2.843-849.2005.

Hahn CL, Falkler WA, Minah GE. Microbiological studies of carious dentine from Human teeth with irreversible pulpitis. Archives of Oral Biology. 1991;36(2):147-53. doi: 10.1016/0003-9969(91)90077-8.

Aas JA, Griffen AL, Dardis SR, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407-17. doi: 10.1128/JCM.01410-07.

Picard C, Fioramonti J, Francois A, et al. Review article: bifidobacteria as probiotic agents–physiological effects and clinical benefits. Alimentary Pharmacology & Therapeutics. 2005;22(6):495-512. doi: 10.1111/j.1365-2036.2005.02615.x.

Modesto M, Biavati B, Mattarelli P. Occurrence of the family bifidobacteriaceae in human dental caries and plaque. Caries Res. 2006;40(3):271–6. doi: 10. 1159/00009 2237.

Mitrakul K, Chanvitan S, Jeamset A, Vongsawan K. Quantitative analysis of S. mutans, Lactobacillus and Bifidobacterium found in initial and mature plaques in Thai children with early childhood caries. Eur Arch Paediatr Dent. 2017;18(4):251-61. doi:10.1007/s40368-017-0295-7.

Tantikulchan S, Mitrakul K. Association between Bifidobacterium and Scardovia Wiggsiae and caries-related factors in severe early childhood caries and caries-free Thai children: a quantitative real-time PCR analysis and a questionaire crosssectional study. Eur Arch Paediatr Dent. 2020;7.doi: 10.1007/s40368-022-00702-0.

Mantzourani M, Gilbert SC, Sulong HN, et al. The Isolation of bifidobacteria from occlusal carious lesions in children and adults. Caries research. 2009;43(4):308-13. doi: 10.1159/000222659.

Nair S, Kumar V S, Krishnan R, Rajan P. A comparative evaluation of bifidobacterial Levels in early childhood caries and severe early childhood caries. J Pharm Bioall Sci. 2017;(9,Suppl S1):82-4. doi: 10.4103/jpbs.JPBS_75_17.

Moraes S, Siqueira Jr J, Rocas I, et al. Clonality of Fusobacterium nucleatum in root canal infections. Oral microbiology and immunology. 2002;17(6):394-6. doi: 10.1034/j.1399-302x.2002.170610.x.

Jacinto RC, Montagner F, Signoretti FG, et al. Frequency, Microbial interactions, and antimicrobial susceptibility of Fusobacterium nucleatum and Fusobacterium necrophorum isolated from primary endodontic infections. Journal of endodontics. 2008;34(12):1451-6. doi:10.1016/j.joen.2008.08.036.

Sundqvist G. Ecology of the root canal flora. Journal of endodontics. 1992;18(9):427-30. doi: 10.1016/S0099-2399(06)80842-3.

Triches TC, de Figueiredo LC, Feres M, et al. Microbial profile of root canals of primary teeth with pulp necrosis and periradicular lesion. Journal of Dentistry for Children. 2014;81(1):14-9. PMID: 24709428.

Guven Y, Ustun N, Aksakal SD, Topcuoglu N, Aktoren O, Kulekci G. Assessment of The endodontic microbiota of abscessed primary teeth using microarray technology. Indian Journal of Dental Research. 2018;29(6):781. doi: 10.4103/ijdr.IJDR_19_18.

Yun KH, Lee HS, Nam OH, Moon CY, Lee JH, Choi SC. Analysis of bacterial Community profiles of endodontically infected primary teeth using pyrosequencing. International journal of paediatric dentistry. 2017;27(1):56-65. doi: 10.1111/ipd.12226.

Topcuoglu N, Bozdogan E, Kulekci G, Aktoren O. Presence of oral bacterial species in primary endodontic infections of primary teeth. J Clin Pediatr Dent. 2013;38(2):155-60. doi:10.17796/jcpd.38.2.5252712533082gt0.

Fabris AS, Nakano V, Avila-Campos MJ. Bacteriological analysis of necrotic pulp and fistulae in primary teeth. J Appl Oral Sci. 2014;22(2):118-24. doi: 10.1590/1678-775720130358.

Yano A, Kaneko N, Ida H, et al. Realtime PCR for quantification of Streptococcus mutans. FEMS Microbiol Lett. 2002;217(1):23–30. doi: 10.1111/j.1574-6968.2002.tb11451.x.

American Academy of Pediatric Dentistry.Guideline on Pulp Therapy for Primary andImmature Permanent Teeth. Pediatric dentistry. 2016;38(6):280-8.

Gomes. BP, Pinheiro ET, Gade-Neto CR, et al. Microbiological examination of infected dental root canals. Oral Microbiol Immunol. 2004;19(2):71-6. doi: 10.1046/j.0902-0055.2003.00116.x.

Ruviere DB, Leonardo MR, da Silva LA, Ito IY, Nelson-Filho P. Assessment of the microbiota in root canals of human primary teeth by checkerboard DNA-DNA hybridization. J Dent Child (Chic). 2007;74(2):118-23. PMID:18477431.

Rocas IN, Lima KC, Assuncao IV, et al. Advanced Caries Microbiota in Teeth with Irreversible Pulpitis. J Endod. 2015;41(9):1450-5. doi: 10.1016/j.joen.2015.05.013.

Chávez de Paz LE, Molander A, Dahlén G. Gram-positive rods prevailing in teeth with Apical periodontitis undergoing root canal treatment. International Endodontic Journal. 2004;37(9):579-87. doi: 10.1111/j.1365-2591.2004.00845.x.

Peters LB, Van Winkelhoff AJ, Buijs JF, Wesselink PR. Effects of instrumentation, Irrigation and dressing with calcium hydroxide on infection in pulpless teeth with Periapical bone lesions. Int Endod J. 2002;35:13–21. doi:10.1046/j.0143-2885.2001.00447.x.

Ledezma-Rasillo G, Flores-Reyes H, Gonzalez-Amaro AM, et al. Identification of cultivable microorganisms from primary teeth with necrotic pulps. J Clin Pediatr Dent. 2010;34(4):329-33.doi:10.17796/jcpd.34.4.20124lu111544377.

Persoon LF , Buijs MJ , Özok AR, et al. The mycobiome of root canal infections is correlated to the bacteriome. Clin Oral Investig. 2017;21(5):1871-81. doi: 10.1007/s00784-016-1980-3.

Haukioja A, Yli-Knuuttila H, Loimaranta V, Kari K, Ouwehand AC, Meurman JH, et al. Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Oral Microbiol Immunol. 2006;21(5):326–32. doi: 10.1111/j.1399-302X.2006.00299.x.

Blome B, Braun A, Sobarzo V, Jepsen S. Molecular identification and quantification of bacteria from endodontic infections using realtime polymerase chain reaction. Oral Microbiol Immunol. 2008;23(5):384-90. doi: 10.1111/j.1399-302X.2008.00440.x.

Sassone LM, Fidel RA, Faveri M, et al. A Microbiological profile of symptomatic teeth with primary endodontic infections. J Endod. 2008;34(5):541-5. doi: 10.1016/j.joen.2008.02.004.

Martin FE, Nadkarni MA, Jacques NA, Hunter N. Quantitative microbiological study of human carious dentine by culture and real-time PCR: association of anaerobes with histopathological changes in chronic pulpitis. Journal of clinical microbiology. 2002;40(5):1698-704. doi: 10.1128/JCM.40.5.1698-1704.2002.

Kipalev Arzu S, Dumani A, Fatih K, et al. Detection of Selected anaerobic pathogens in primary and secondary endodontic infections in a Turkish population. African Journal of Microbiology Research. 2014;8(13):1460-66. doi:10.5897/AJMR2013.6226.

Cogulu D, Uzel A, Oncag O, et al. PCR-based identification of selected pathogens Associated with endodontic infections in deciduous and permanent teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:443-449. doi: 10.1016/j.tripleo.2008.03.004.

Farber PA, Seltzer S. Endodontic microbiology. I. Etiology. Journal of Endodontics. 1988;14(7):363-71. doi: 10.1016/S0099-2399(88)80200-0.

Sinsimer D, Leekha S, Park S, et al. Use of a multiplex molecular beacon platform for Rapid detection of methicillin and vancomycin resistance in Staphylococcus aureus. J Clin Microbiol. 2005;43(9):4585–91. doi: 10.1128/JCM.43.9.4585-4591.2005.

Ammann TW, Bostanci N, Belibasakis GN, Thurnheer T. Validation of a quantitative Real time PCR assay and comparison with fluorescence microscopy and selective Agar plate counting for species-specific quantification of an in vitro subgingival Biofilm model. J Periodontal Res. 2013;48(4):517-26. doi: 10.1111/jre.12034.

Matsuki T, Watanabe K, Fujimoto J, et al. Quantitative PCR with 16S rRNA-gene targeted species-specific primers for analysis of human intestinal bifidobacteria. Applied and environmental microbiology. 2004;70(1):16773. doi: 10.1128/AEM.70.1.167-173.2004.

Downloads

Published

2023-09-13

How to Cite

1.
Piyasoonthorn P, Mitrakul K. Association between Bifidobacterium, Fusobacterium nucleatum and Type of Root Canal Infections in Primary Teeth and Clinical Symptom: A Quantitative Real-Time PCR Analysis. SWU Dent J. [Internet]. 2023 Sep. 13 [cited 2025 Jan. 22];16(2):99-113. Available from: https://ejournals.swu.ac.th/index.php/swudentj/article/view/15451

Issue

Section

บทวิทยาการ (Original articles)

Categories