ประเด็นและแนวโน้มการวิจัยทางวิทยาศาสตร์ศึกษา

Main Article Content

ชาตรี ฝ่ายคำตา

Abstract

Issues and Research Trends in Science Education
 
Chatree Faikhamta
 
รับบทความ: 3 มกราคม 2559; ยอมรับตีพิมพ์: 15 มีนาคม 2559
 
บทคัดย่อ
การวิจัยทางวิทยาศาสตร์ศึกษาเป็นกระบวนสืบเสาะเพื่อหาคำตอบในประเด็นต่าง ๆ ที่เกี่ยวข้องกับวิทยาศาสตร์ศึกษา ประเด็นและแนวโน้มการวิจัยทางวิทยาศาสตร์มีการเปลี่ยนแปลงตลอดเวลา ทั้งนี้เนื่องจากการเปลี่ยนแปลงของสังคม เศรษฐกิจและวัฒนธรรม ในฐานะนักวิทยาศาสตร์ศึกษาจึงจำเป็น ต้องเข้าใจ เข้าถึง และติดตามประเด็นและแนวโน้มของการวิจัยทางวิทยาศาสตร์ศึกษาเพื่อนำไปสู่ความคิดเกี่ยวกับคำถามวิจัยใหม่ ๆ และจะส่งผลทำให้เกิดองค์ความรู้ใหม่และขับเคลื่อนให้วิทยาศาสตร์ศึกษามีความเข้มแข็งมากขึ้น บทความนี้มุ่งอธิบายเกี่ยวกับประเด็นและแนวโน้มการวิจัยทางวิทยาศาสตร์ศึกษา โดยมีคำถามหลักดังต่อไปนี้ ชุมชนนักวิทยาศาสตร์ศึกษาเป็นอย่างไร งานวิจัยทางวิทยาศาสตร์ศึกษาเหมือนหรือแตกต่างกับงานวิจัยทางวิทยาศาสตร์อย่างไร ประเด็นของการวิจัยทางวิทยาศาสตร์ศึกษามีอะไรบ้าง ทิศทางการวิจัยทางวิทยาศาสตร์ศึกษาในบริบทของประเทศไทยควรเป็นอย่างไร
คำสำคัญ: วิทยาศาสตร์ศึกษา   การวิจัย  บริบทประเทศไทย
 
Abstract
Research in science education is an inquiry process used to answer various issues in science education. Since society, economics and culture have been changed rapidly, issues and trends in science education have also been changed. As science educators, we should understand, get insight and up-to-date issues and trends in science education research which will lead us to come up with new research questions. These research questions will bring us to new knowledge and strengthen our science education community. This article aims to explain research trends in science education. Main guiding questions of the article are: what is science education community? What are similarities and differences between science and science education researches? What are issues in science education? and what is the direction of science education in Thai context?
Keywords: Science education, Research, Thai context

Downloads

Download data is not yet available.

Article Details

Section
บทความวิชาการ (Academic Article)

References

Abell, S. K., Appleton, K., and Hanuscin, D. L. (2009). Designing and Teaching the Elementary Science Methods Course. New York: Routledge.

Abualrob, M. A., and Daniel, E. G. (2013). The delphi technique in identifying learning objectives for the development of science, technology and society modules for Palestinian ninth grade science curriculum. International Journal of Science Education 35(15): 2538–2558.

Acar, B., and Tarhan, L. (2008). Effects of cooperative learning on students’ understanding of metallic bonding. Research in Science Education 38(4): 401–420.

Albe, V. (2008) When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students’ argumentation in group discussions on a socio-scientific issue. Research in Science Education 38(1): 67–90.

Amin, T. G. (2015). Conceptual metaphor and the study of conceptual change: Research synthesis and future directions. International Journal of Science Education 37(5-6): 966–991.

Akerson, V., Pongsanon, K., Roger, M. A., Carter, I., and Galindo, E. (2015). Exploring the use of lesson study to develop elementary preservice teachers’ pedagogical content knowledge for teaching nature of science. International Journal of Science and Mathematics Education. Online First: 1–20.

Balliet, R. N., and Riggs, E. M. (2015). Students’ problem solving approaches for developing geologic models in the field. Journal of Research in Science Teaching 52(8): 1109–1131.

Barak, M., and Hussein-Farraj, R. (2013). Integrating model-based learning and animations for enhancing students’ under-standing of proteins structure and function. Research in Science Education 43(2): 619–636.

Bell, B. (1987) Science curriculum development in New Zealand a historical account. Research in Science Education 17(1): 244–252.

Bell, B. (1993). Children’ Science, Constructivism and Learning in Science. Australia: Deakin University Press.

Berland, L. K., and Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching 49(1): 68–94.

Bhattacharyya, S., Volk, T., and Lumpe, A. (2009). The Influence of an extensive inquiry-based field experience on pre-service elementary student teachers’ science teaching beliefs. Journal of Science Teacher Education 20: 199–218.

Boesdorfer, S., and Lorsbach, A. (2014). PCK in action: Examining one chemistry teacher's practice through the lens of her orientation toward science teaching. International Journal of Science Education 36(13): 2111–2132.

Borko, H., and Putnam, R. T. (1996). Learning to Teach. In Berliner, D. C., and Calfee, R. C. (Eds.), Handbook of Educational Psychology (pp. 673–708). New York: Macmillan.

Caleon, I., and Subramaniam, R. (2010). Do students know what they know and what they do not know? using a four-tier diagnostic test to assess the nature of students’ alternative conceptions. Research in Science Education 40: 313–337.

Campbell, T., Oh, P.S., and Neilson, D. (2012). Discursive modes and their pedagogical functions in model-based inquiry (MBI) classrooms. International Journal of Science Education 34(15): 2393–2419.

Capobianco, B. M., and Feldman, A. (2010). Repositioning Teacher Action Research in Science Teacher Education. Journal of Science Teacher Education 21(8); 909–915.

Chandrasegaran, A., Treagust, D. F., and Mocerino, M. (1997). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school pupils’ ability to describe and explain chemical reactions using multiple levels of representation. Chemical Education Research and Practice 8(3): 293–207.

Chen, S. (2006). Development of an instrument to assess views on nature of science and attitudes toward teaching science. Science Education 90: 803–819.

Christenson, N. Rundgren, S. C., and Zeidler, D. L. (2014). The relationship of discipline background to upper secondary students’ argumentation on socioscientific issues. Research in Science Education 44(4): 581–601.

Coll, R. K., and Treagust, D. F. (2001). Learners' mental models of chemical bonding. Research in Science Education 31: 357–382.

Deng, F., Chen, D., Tsai, C.-C., and Chai, C. S. (2011). Students’ views of the nature of science: A critical review of research. Science Education 95: 961–999.

Dickerson, D. Craig, A. E., Steward, O., Chappell, S., and Hathcock, S. (2014). The examination of a pullout STEM program for urban upper elementary students. Research in Science Education 44(3): 483–506.

Driver, R., and Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education. 10: 37–40.

Duit, R., and Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learn-ing. International Journal of Science Education 25: 671–688.

Eberle, F., and Keeley, P. (2008). Formative assessment probes: A look at how probes uncover conceptual connections. Science and Children. January, 50–54.

Evagorou, M, Jimenez-Aleixandre, M. P., and Osborne, J. (2012). “Should we kill the grey squirrels?” A study exploring students’ justifications and decision-making. Inter-national Journal of Science Education 34(3): 401–428.

Faikhamta, C. (2013). The Development of in-service science teachers’ understandings of and orientations to teaching the nature of science within a PCK-based NOS course. Research in Science Education 43(2):847–869.

Fawns, R. (1998). The democratic argument for science curriculum reform in Britain and Australia: 1935–1945. Research in Science Education 28(3): 281–299.

Fraser, B. J., Tobin K. G., and McRobbie C. J. (2012). Second international handbook of science education. New York, USA: Springer.

Garcia-Mila, M., Andersen, C., and Rojo, N. E. (2011). Elementary students’ laboratory record keeping during scientific inquiry. International Journal of Science Educ-ation 33(7): 915–942.

Gilbert, J. K., Bulte, A. M. W., and Pilot, A. (2011). Concept development and transfer in context‐based science education. International Journal of Science Education 33(6): 817–837.

Gilbert, J. K., Osborne, R., and Fensham, P. (1982). Children’s science and its con-sequences for Teaching. Science Education 66(4): 623–633.

Guba, E. G., and Lincoln, Y. S. (1995). Competing paradigms in qualitative research. In Denzin, N. K. and Lincoln, Y. S. (Eds.), Handbook of Qualitative Research. Thousand Oaks, CA: SAGE.

Kallunki, V. (2013). How to measure qualitative understanding of DC-circuit phenomena – Taking a closer look at the external representations of 9-year-old. Research in Science Education 43(2): 827–845.

Kuhn, T. S. (1970). The Structure of Scientific Revolutions. 2nd ed. Chicago, IL: University of Chicago Press.

Krell, M., Reinisch, B., and Krüger, D. (2015). Analyzing students’ understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Research in Science Education 45: 367–393.

Lederman, N. G., and Abell, S. K. (Eds.). (2014). Handbook of Research on Science Education (Vol. II). New York, USA: Routledge.

Magnusson, S., Krajcik, J., and Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In Gess-Newsome, J. and Lederman, N. G (Eds.), Examining Pedagogical Content Knowledge: The Con-struct and its Implications for Science Education. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Mozzer, N. B., and Justi, R. (2012). Students’ Pre- and post-teaching analogical reason-ing when they draw their analogies. International Journal of Science Education 34(3): 429–458.

National Association of Research in Science Teaching (NARST) Conference. (2016). Annual International Conference. Retrieved from https://www.narst.org/annual conference/2016conference.cfm, February 5, 2016.

Nichols, K., Gillies, R., and Hedberg, J. (2015). Argumentation-based collaborative inquiry in science through representational work: impact on primary students’ representational fluency. Research in Science Education. OnlineFirst: 1–22.

Osborne, R., and Freyberg, P. (1985). Learning in Science: The implications of Children’s Science. Auckland: Heinemann Education.

Roth, W.-M., and van Eijck, M. (2010). Fullness of life as minimal unit: STEM learning across the life span. Science Education 94: 1027–1048.

Park, S., and Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education 38(3): 261–284.

Sampson, V., and Schleigh, S. (2013). Scientific Argumentation in Biology: 30 classroom activities. Arlington, VA: NSTA Press.

Schwartz, R. S., Lederman, N. G., and Crawford, B. A. (2004). Views of nature of science in an authentic context: an explicit approach to bridging the gap between nature of science and scientific Inquiry. Science Education 88: 610–645.

She, H. C. (2004). Facilitating changes in ninth grade students’ understanding of dis-solution and diffusion through DSLM instruction. Research in Science Education 34(4): 503–526.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher 15(2): 4–14.

Smith, K. V., Loughran, J., Berry, A., and Dimi-trakopoulos, C. (2012). Developing scientific literacy in a primary school. Inter-national Journal of Science Education 34(1): 127–152.

Thorolfsson, M., Finnbogason, G. E., and Macdonald, A. (2012). A perspective on the intended science curriculum in iceland and its ‘Transformation’ over a period of 50 Year. International Journal of Science Education 34(17): 2641–2665.

Tobin, K., and Tippins, D. J. (1993). Con-structivism as a referent for teaching and learning. In Tobin, K. (Ed.), The Practice of Constructivism in Science Education. Washington D.C.: AAAS Press.

Tsui, C., and Treagust, D. F. (2010). Evaluating Secondary students’ scientific reasoning in genetics using a two-tier diagnostic instrument. International Journal of Science Education 32: 1073–1098.

Wahbeh, N., and Abd-El-Khalick, F. (2014). Revisiting the translation of nature of science understanding into instructional practice: teachers’ nature of science pedagogical content knowledge. International Journal of Science Education 36(3): 425–466.

Wu, H.-K., and Wu, C. L. (2011). Exploring the development of fifth graders’ practical epistemologies and explanation skills in inquiry-based learning classrooms. Research in Science Education 41(3): 319–340.

Yeo, J., and Gilbert, J. K. (2014) Constructing a scientific explanation – A narrative account. International Journal of Science Education 36(11): 1902–1935.

Zembal-Saul, C., Blumenfeld, P., and Krajcik, J. (2000). Influence of guided cycles of planning, teaching, and reflection on prospective elementary teachers' science content representations. Journal of Research in Science Teaching 37(4): 318 –339.

Most read articles by the same author(s)