การพัฒนาการคิดเชิงคำนวณของผู้เรียนชั้นมัธยมศึกษาปีที่ 4 ด้วยการปฏิบัติทางชีวสารสนเทศขั้นพื้นฐาน
Main Article Content
Abstract
Natthasit Norasit, Pongprapan Pongsophon, Wanwipa Vongsangnak and Santichai Anuworrachai
รับบทความ: 12 มีนาคม 2566; แก้ไขบทความ: 13 ตุลาคม 2566; ยอมรับตีพิมพ์: 5 ธันวาคม 2566; ตีพิมพ์ออนไลน์: 21 ธันวาคม 2566
บทคัดย่อ
วิทยาการคำนวณได้เข้ามามีบทบาทในวงการวิทยาศาสตร์อย่างมาก โดยเฉพาะอย่างยิ่งในการจัดการข้อมูลทางวิทยาศาสตร์ขนาดใหญ่ มีความซับซ้อนสูง ผู้เรียนต้องเตรียมความพร้อมในการเป็นนักวิทยาศาสตร์ในยุคแห่งข้อมูลและเทคโนโลยีโดยการมีการคิดเชิงคำนวณ ทว่ายังไม่มีแนวทางปฏิบัติที่ชัดเจนในการจัดการเรียนรู้ที่ส่งเสริมการคิดเชิงคำนวณในชั้นเรียนวิทยาศาสตร์ ดังนั้น งานวิจัยมีเป้าหมายเพื่อ 1) วัดการคิดเชิงคำนวณของผู้เรียนก่อนและหลังเรียนด้วยการปฏิบัติทางชีวสารสนเทศขั้นพื้นฐาน และ 2) ศึกษาแนวปฏิบัติที่ดีในการใช้การปฏิบัติทางชีวสารสนเทศขั้นพื้นฐานเพื่อพัฒนาการคิดเชิงคำนวณ กลุ่มตัวอย่างคือนักเรียนชั้นมัธยมศึกษาปีที่ 4 โรงเรียนสาธิตแห่งหนึ่งในกรุงเทพฯ จำนวน 32 คน ผู้วิจัยออกแบบการจัดการเรียนรู้ แบ่งเป็น 2 ช่วง ได้แก่ การจัดการเรียนรู้โดยไม่ใช้คอมพิวเตอร์และใช้คอมพิวเตอร์ เก็บข้อมูลด้วยแบบวัดการคิดเชิงคำนวณ วิเคราะห์ข้อมูลด้วยสถิติเชิงพรรณนาและทดสอบความแตกต่างระหว่างค่าเฉลี่ยสองค่าที่ได้จากกลุ่มตัวอย่างสองกลุ่มที่ไม่เป็นอิสระต่อกัน (paired t–test) พบว่า ค่าเฉลี่ยคะแนนการคิดเชิงคำนวณก่อนและหลังเรียน เท่ากับ 17.78 (SD = 4.11) และ 21.65 (SD = 2.18) แตกต่างกัน (t31, .05 = 7.08, p < .05) รวมถึงค่าเฉลี่ยคะแนนทั้ง 4 องค์ประกอบเพิ่มขึ้นอย่างมีนัยสำคัญเช่นกัน และครูผู้สอนควรจัดการเรียนรู้โดยใช้การปฏิบัติทางชีวสารสนเทศที่ท้าทายและเชื่อมโยงกับชีวิตประจำวันต่อผู้เรียนอย่างชัดแจ้งและเนื้อหาสอดคล้องกับหลักสูตรวิทยาศาสตร์ของประเทศ เพื่อการใช้และพัฒนาการคิดเชิงคำนวณอย่างต่อเนื่อง
คำสำคัญ: ชีวสารสนเทศ การคิดเชิงคำนวณ วิทยาการคำนวณ
Abstract
One impact of computing in scientific fields and thinking processes lies in the processing of voluminous scientific data. Students therefore need to prepare themselves to confront the upcoming digital era and handle cutting–edge technology using computational thinking (CT); however, this is still absent from typical science classrooms. Hence, the purposes of this study were to 1) assess students’ CT before and after learning basic bioinformatics practices and 2) study what are good practices to incorporate bioinformatics practices to enhance students’ CT. Researchers designed four learning plans using inquiry–based learning and basic bioinformatics practices, having two parts: unplugged and plugged–in sessions. Data were collected using CT tests and analyzed using descriptive statistics and a paired t–test. The participants comprised 32 tenth–grade students in a science–technology emphasis program at a demon-stration school in Bangkok, Thailand. The results showed CT pretest and posttest mean were significantly different by 17.78 (SD = 4.11) and 21.65 (SD = 2.18), respectively (t31, .05 = 7.08, p < .05). Additionally, the development of CT was evident in the improvement of all four CT components as well, and good practices to incorporate bioinformatics practices is to use real–life bioinformatics challenges explicitly and related to the standard science curriculum to maintain engagement in and persistence of CT usage.
Keywords: Bioinformatics, Computational thinking, Computing science
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Arık, M., and Topçu, M. S. (2022). Computational thinking integration into science classrooms: Example of digestive system. Journal of Science Education and Technology 31: 99–115.
Attwood, T. K., Blackford, S., Brazas, M. D., Davies, A., and Schneider, M. V. (2019). A global perspective on evolving bioin-formatics and data science training needs. Briefings in Bioinformatics 20(2): 398–404.
Bain, S. A., Plaisier, H., Anderson, F., Cook, N., Crouch, K., Meagher, T. R., Ritchie, M. G., Wallace, E., and Barker, D. (2022). Bringing bioinformatics to schools with the 4273pi project. PLoS Computational Biology 18(1): e1009705.
Bayat, A. (2002). Science, Medicine, and the Future: Bioinformatics. BMJ (Clinical Research Ed.) 324(7344): 1018–1022.
Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., and Engelhardt, K. (2016). Developing computational thinking in compulsory education – Implications for policy and practice. EUR – Scientific and Technical Research Reports. doi:10.2791/79 2158
Chanchaichaovivat, A., Kirdtabtim, S. and Phornphisutthimas, S. (2016). Application of Microorganisms in Sustainable Agriculture. Journal of Research Unit on Science, Technology and Environment for Learning 7(2): 398–413. (in Thai)
Chompunuch, P., Jantrasee R., and Saenna, P. (2022). Science academic hardiness and its relationship with science learning achievement of science–oriented program’s students. Journal of Research Unit on Science, Technology and Environment for Learning 13(2): 250–270. (in Thai)
Creswell, J. W., and Poth, C. N. (2017). Qualitative inquiry and research design. Los Angeles, USA: SAGE.
Dagiene, V., and Sentance, S. (2016). It’s computational thinking! Bebras tasks in the curriculum. Lecture Notes in Computer Science 9973: 28–39.
Dede, C. (2014) The Role of Digital Technologies in Deeper Learning. Students at the Center: Deeper Learning Research Series. Retrieved from https://studentsat thecenterhub.org/resource/the-role-of-digital-technologies-in-deeper-learning, November 11, 2020.
Division of Research and Educational Quality Assurance. (2017). Thailand 4.0 blueprint – Economic Model for Prosperity, Security, and Sustainability. Retrieved from https://www.nstda.or.th/home/knowledge_post/blueprint-thailand-4, September 21, 2020.
Durak, H. Y., and Saritepeci, M. (2018). Analysis of the relation between computational thinking skills and various variables with the structural equation model. Computers & Education 116(1): 191–202.
Fillinger, S., de la Garza, L., Peltzer, A., Kohl-bacher, O., and Nahnsen, S. (2019). Challenges of big data integration in the life sciences. Analytical and Bioanalytical Chemistry 411(26): 6791–6800.
Form, D., and Lewitter, F. (2011). Ten simple rules for teaching bioinformatics at the high school level. PLoS Computational Biology 7(10): e1002243.
Grover, S., and Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher 42(1): 38–43.
Hatlevik, O. E., Throndsen, I., Loi, M., and Gudmundsdottir, G. B. (2018). Students’ ICT self–efficacy and computer and infor-mation literacy: Determinants and relationships. Computers & Education 118: 107–119.
Institute for the Promotion of Teaching Science and Technology [IPST], Thailand. (2017a). Biology Curriculum Manual (Revised version 2017 based on the Basic Education Core Curriculum 2008). Retrieved from https://www.scimath.org/course-manual, October 5, 2020. (in Thai)
Institute for the Promotion of Teaching Science and Technology [IPST], Thailand. (2017b). Standard Computing Science Curriculum Manual. Retrieved from https://www.scimath.org/coursemanual, October 5, 2020. (in Thai)
Israel–Fishelson, R., and Hershkovitz, A. (2019). Persistence and achievement in acquiring computational thinking concepts: A large–scale log–based analysis. Proceedings of E–Learn: World Conference on E–Learning in Corporate, Government, Healthcare, and Higher Education (pp. 1002–1012). New Orleans, Louisiana, US: Association for the Advancement of Computing in Education (AACE). Retrieved from https://www.learntechlib.org/primary/p/211181, February 14, 2022.
Izu, C., Mirolo, C., Settle, A., Mannila, L., and Stupuriene, G. (2017). Exploring Bebras tasks content and performance: A multinational study. Informatics in education 16(1): 39–59.
Khan, A. M., Tan, T. W., Schönbach, C., and Ranganathan, S. (2013). APBioNet – Transforming bioinformatics in the Asia–Pacific region. PLoS Computational Biology 9(10): e1003317.
Kleinschmit, A. J., Ryder, E. F., Kerby, J. L., Murdoch, B., Donovan, S., and Grandgenett, N. F. (2021). Community development, implementation, and assessment of a NIBLSE bioinformatics sequence similarity learning resource. PLoS ONE 16(9): e0257404.
Kleinschmit, A., Brink, B., Roof, S., Goller, C., and Robertson, S. D. (2019). Sequence similarity: An inquiry based and “under the hood” approach for incorporating molecular sequence alignment in introductory undergraduate biology courses. CourseSource. Retrieved from https://doi.org/10.24918/cs.2019.5, February 14, 2022.
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Joyce, M. S., and Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads 2(1): 32–37.
Li, X. Q., and Du, D. (2014). Variation, evolution, and correlation analysis of C+G content and genome or chromosome size in different kingdoms and phyla. PLoS ONE 9(2): e88339.
Looi, C. K., How, M. L., Longkai, W., Seow, P., and Liu, L. (2018). Analysis of linkages between an unplugged activity and the development of computational thinking. Computer Science Education 28(3): 255–279.
Luscombe, N. M., Greenbaum, D., and Gerstein, M. (2001). What is bioinformatics? A proposed definition and overview of the field. Methods of Information in Medicine 40(4): 346–358.
Machluf, Y., and Yarden, A. (2013). Integrating bioinformatics into senior high school: Design principles and implications. Brief-ings in Bioinformatics 14(5): 648–660.
Machluf, Y., Gelbart, H., Ben–Dor, S., and Yarden, A. (2017). Making authentic science accessible–the benefits and challenges of integrating bioinformatics into a high–school science curriculum. Briefings in Bioinformatics 18(1): 145–159.
Marques, I., Almeida, P., Alves, R., Dias, M. J., Godinho, A., and Pereira–Leal, J. B. (2014). Bioinformatics projects supporting life–sciences learning in high schools. PLOS Computational Biology 10(1): e1003404.
Martins, A., Fonseca, M. J., Lemos, M., Lencastre, L., and Tavares, F. (2020). Bioinformatics–based activities in high school: Fostering students’ literacy, interest, and attitudes on gene regulation, genomics, and evolution. Frontiers in Microbiology 11(2410): 578099.
National Research Council [NRC] (US) Committee on a New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology Revolution. (2019). A New Biology for the 21st Century: Ensuring the United States Leads the Coming Biology Revolution. US: National Academies Press.
National Research Council [NRC]. (2005). Catalyzing Inquiry at the Interface of Computing and Biology. Washington, DC: The National Academies Press.
Putwattana, N. (2019). Local wisdom and Science Education & Learning. Journal of Research Unit on Science, Technology and Environment for Learning 9(2): 352–369. (in Thai)
Qin, H. (2009). Teaching computational thinking through bioinformatics to biology students. SIGCSE Bulletin 41(1): 188–191.
Rubinstein, A., and Chor, B. (2014). Computational thinking in life science education. PLOS Computational Biology 10(11): e1003897.
Schatz, M. C. (2012). Computational thinking in the era of big data biology. Genome Biology 13(11): 177.
Sentence, S., and Csizmadia, A. (2017). Computing in the curriculum: challenges and strategies from a teacher’s perspective. Education and Information Technologies 22(2): 469–495.
Sırakaya, M., Alsancak Sırakaya, D. and Korkmaz, Ö. (2020). The impact of STEM attitude and thinking style on computational thinking determined via structural equation modeling. Journal of Science Education and Technology 29(4): 561–572.
Sondakh, D. E., Osman, K., and Zainudin, S. (2020). A proposal for holistic assessment of computational thinking for undergraduate: Content validity. European Journal of Educational Research 9(1): 33–50.
Stewart, W. H., Baek, Y., Kwid, G., and Taylor, K. (2021). Exploring factors that influence computational thinking skills in elementary students’ collaborative robotics. Journal of Educational Computing Research 59(6): 1208–1239.
Sun, L., Hu, L., and Zhou, D. (2022). Single or combined? A study on programming to promote junior high school students’ computational thinking skills. Journal of Educational Computing Research 60(2): 283–321.
Tan, T. W., Lim, S. J., Khan, A. M., and Ranganathan, S. (2009). A proposed minimum skill set for university graduates to meet the informatics needs and challenges of the “-omics” era. BMC Genomics 10(Suppl. 3): S36.
Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation 27(2): 237–246.
Tsai, C. Y. (2019). Improving students’ understanding of basic programming concepts through visual programming language: The role of self–efficacy. Computers in Human Behavior 95: 224–232.
Udomsin, C., and Porntrai, S. (2017). Developing academic achievement in learning cell cycle and mitosis using a hands–on activity of science inquiry. Journal of Research Unit on Science, Technology and Environment for Learning 8(2): 326–340. (in Thai)
University of Oxford. (2018). UK Bebras Computational Thinking Challenge. Retrieved from http://www.bebras.uk, October 21, 2023.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., and Wilensky, U. (2015). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology 25(1): 127–147.
Wing, J. (2006). Computational thinking. Communications of the ACM 49(3): 33–35.
Yadav, A., Hong, H., and Stephenson, C. (2016). Computational thinking for all: Pedagogical approaches to embedding 21st century problem solving in K–12 classrooms. TechTrends 60(6): 565–568.
Yadav, A., Stephenson, C., and Hong H. (2017). Computational thinking for teacher education. Communications of the ACM 60(4): 55–62.