ความรู้เดิมของนักเรียน: อุปสรรคหรือทรัพยากร
Main Article Content
Abstract
Luecha Ladachart and Ladapa Ladachart
รับบทความ: 18 มกราคม 2561; แก้ไขบทความ: 3 สิงหาคม 2561; ยอมรับตีพิมพ์: 17 ตุลาคม 2561
บทคัดย่อ
บทความนี้มีวัตถุประสงค์เพื่อสร้างความเข้าใจที่ดีขึ้นเกี่ยวกับมุมมองต่อความรู้เดิมของนักเรียน วรรณกรรมด้านวิทยาศาสตร์ศึกษาเปิดเผยมุมมองที่เป็นไปได้ 2 แบบ ได้แก่ (1) ความรู้เดิมในฐานะอุปสรรคต่อการเรียนรู้ และ (2) ความรู้เดิมในฐานะทรัพยากรในการเรียนรู้ โดยมุมมองแบบหลังมีความสามารถในการอธิบายกระบวนการเรียนรู้ตามทฤษฎีสรรคนิยมได้ดีกว่ามุมมองแบบแรก อย่างไรก็ตาม หลักฐานจำนวนหนึ่งบ่งบอกว่า นักวิจัยไทยมีแนวโน้มที่จะนำเสนอมุมมองแบบแรกในรายงานวิจัยของตนเอง ดังนั้นบทความนี้จึงกระตุ้นเตือนให้นักวิจัยไทยทบทวนและขยายมุมมองที่ตนเองมีต่อความรู้เดิมของนักเรียน ทั้งนี้เพราะนักวิจัยไทยควรเป็นแบบอย่างว่า ครูวิทยาศาสตร์ไทยควรมองและปฏิบัติต่อความรู้เดิมของนักเรียนอย่างไร
คำสำคัญ: การเรียนรู้วิทยาศาสตร์ ความรู้เดิม ทรัพยากรทางสติปัญญา สรรคนิยม อุปสรรคการเรียนรู้
Abstract
This article aims at facilitating better understanding about perspectives on students’ prior knowledge. Science education literature reveals 2 possible perspectives, which include (1) perspective on students’ prior knowledge as a learning obstacle, and (2) perspective on students’ prior knowledge as a learning resource. The latter perspective has better ability in explaining a learning process according to constructivist theory than the former perspective. Nonetheless, ample evidences indicate that Thai researchers tend to present the former perspective in their research reports. Therefore, this article urges Thai researchers to review and broaden a perspective that they may have on students’ prior knowledge. This is because Thai researchers should play a role in modeling how Thai science teachers should perceive and cope with students’ prior knowledge.
Keywords: Science learning, Prior knowledge, Cognitive resource, Constructivism, Learning obstacle
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Allen, M. (2014). Misconceptions in Primary Science. Maidenhead: Open University.
Bootvisate, P., Pathommapas, N., and Muangpatom, C. (2015). The development of model–centered instruction sequence learning management on chemical bond concepts of Matthayomsuksa 4 students. Journal of Research Unit on Science, Technology and Environment for Learning 6(2): 156–174. (in Thai)
Chaimutchim, K., and Chairam, S. (2014). Enhancing Grade–12 students’ understanding of biomolecules using inquiry–based activities. Journal of Research Unit on Science, Technology and Environment for Learning 5(2): 165–175. (in Thai)
Chalermchat, S., and Wuttiprom, S. (2015). Effect of peer instruction on pattern analysis of grade–10 students’ conceptual under-standing about force and motion. Journal of Research Unit on Science, Technology and Environment for Learning 6(2): 232–242.
Chi, M. T. H. (2005). Commonsense Conceptions of emergent processes: Why some misconceptions are robust. The Journal of the Learning Sciences 14(2): 161–199.
Chi, M. T. H., Slotta, J. D., and de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction 4(1): 27–43.
Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching 30(10): 1241–1257.
Clement, J., and Zietsman, A. (1989). Not all preconceptions are misconceptions: finding “anchoring conceptions” for grounding instruction on students’ intuitions. International Journal of Science Education 11(Special Issue): S54–S65.
Dahsah, C., and Faikhamta, C. (2008). Science education in Thailand: science curriculum reform in transition. In Coll, R. K., and Taylor, N. (Eds.). Science Education in Context: An International Examination of the Influence of Context on Science Curricula Development and Implementation. (pp.291–300). Rotterdam: Sense.
Dekkers, P. J. J. M., and Thijs, G. D. (1998). Making productive use of students’ initial conceptions in developing the concept of force. Science Education 82(1): 31–51.
diSessa, A. A. (2002). What “conceptual ecology” is a good idea. In Limon, M. and Mason, L. (Eds.). Reconsidering Conceptual Change: Issues in Theory and Practice. (pp. 29–60). The Netherlands: Academic.
Duit, R. (2009). Bibliography – STCSE: Stu-dents’ and Teachers’ Conceptions and Science Education. Retrieved from http:// archiv.ipn.uni-kiel.de/stcse/, December 3, 2017.
Duschl, R., Maeng, S., and Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education 47(2): 123–182.
Eshach, H., and Schwarts, J. L. (2006). Sound stuff? naïve materialism in middle–school students’ conceptions of sound. International Journal of Science Education 28(7): 733–764.
Faikhamta, C. and Clarke, A. (2013). A self–study of a Thai teacher educator developing a better understanding of PCK for teaching about teaching science. Research in Science Education 43(3): 955–979.
Galili, I., Bendall, S., and Goldberg, F. (1993). The effects of prior knowledge and instruction on understanding image formation. Journal of Research in Science Teaching 30(3): 271–301.
Hammer, D. (1993). More than misconceptions: Multiple perspectives on student knowledge and reasoning, and an appropriate role for education research. American Journal of Physics 64(10): 1316–1325.
Hammer, D., Elby, A., Scherr, R., and Redish, E. F. (2005). Resources, framing, and transfer. In Mestre, J. P. (Ed.). Transfer of Learning from a Modern Multidisciplinary Perspective. (pp. 89–119). Greenwich, CT: Information Age.
Hammer, D., Goldberg, F., and Fargason, S. (2012). Responsive teaching and the beginnings of energy in a third grade class-room. Review of Science, Mathematics and ICT Education 6(1): 51–72.
Jaisuk, Y., Tipparach, U., and Tanahoung, C. (2010). Developing students’ conceptions of mechanical waves for Mattayomsuksa V students using CIPPA model. Journal of Research Unit on Science, Techno-logy and Environment for Learning 1(2): 85–93. (in Thai)
Juntana, P., and Wuttiprom, S. (2015). Using a Predict–observe–explain teaching method to enhance scientific concept about simple Direct current circuits of grade 11 student. Journal of Research Unit on Science, Technology and Environment for Learning 6(1): 1–13. (in Thai)
Khongton, T., Sukhummek, B., and Faikhamta, C. (2016). Development of grade–11 stu-dents’ conceptions about organic chemistry through model-based learning. Journal of Research Unit on Science, Technology and Environment for Learning 7(1): 62–76. (in Thai)
Kuhapensang, O., Sritha, S., Pokpun, K., Phong-paijit, P., Shinnasin, K., and Pitiporntapin, S. (2013). Enhancing of the 10th grade students’ scientific conceptions of animal kingdom using variation theory. Journal of Research Unit on Science, Technology and Environment for Learning 4(2): 99–107. (in Thai)
Ladachart, L. (2015). Qualitative Research for Science Teachers. Bangkok: Chulalongkorn University. (in Thai)
Ladachart, L. (2016). Learning progressions in science. Journal of Research Unit on Science, Technology and Environment for Learning 7(1): 141–162. (in Thai)
Ladachart, L., and Ladachart, L. (2016a). Fifth grade students’ questioning about science. Journal of Humanities and Social Sciences Mahasarakham University 35(1): 188–202. (in Thai)
Ladachart, L., and Ladachart, L. (2016b). From students’ explanations towards a way to learning design about global warming. Journal of Research Unit on Science, Technology and Environment for Learning 7(1): 88–102. (in Thai)
Ladachart, L., and Nashon, S. (2010). Alternative frameworks in conceptions of sound: A historical evolution. International Journal of Education 33(2): 3–24.
Ladachart, L., Yakoh, S., and Wadeng, W. (2014). Eleventh–grade students’ understanding about drawing light ray diagrams.
Srinakharinwirot Research and Development (Journal of Humanities and Social Sciences) 6(12): 109–121. (in Thai)
Larkin, D. (2012). Misconceptions about “misconceptions”: Preservice secondary science teachers’ views on the value and role of student ideas. Science Education 96(5): 927–959.
Levin, D. M., Hammer, D., and Coffey, J. E. (2009). Novice teachers’ attention to student thinking. Journal of Teacher Education 60(2): 142–154.
Lunenberg, M., Korthagen, F., and Swennen, A. (2007). The teacher educator as a role model. Teaching and Teacher Education 23(5): 586–601.
Maskiewicz, A. C., and Lineback, J. E. (2013). Misconceptions are “so yesterday!” CBE—Life Sciences Education 12(3): 352–356.
Maskiewicz, A. C., and Winters, V. A. (2012). Understanding the Co–construction of inquiry practices: A case study of a responsive teaching environment. Journal of Re-search in Science Teaching 49(4): 429–464.
Muangramun, R., and Pitiporntapin, S. (2013). Enhancing grade 8th students’ understanding of scientific concept in topic of “our earth” using model–based learning. Journal of Research Unit on Science, Technology and Environment for Learning 4(1): 38–45. (in Thai)
Nakasenee, J., Pimthong, P., and Pornsilapatip, P. (2015). The study of grade 11th students’ acid–base conceptions. Journal of Research Unit on Science, Technology and Environment for Learning 6(1): 70–83. (in Thai)
Posner, G. J., Strike, K. A., Hewson, W., and Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education 66(2): 211–227.
Prawat, R. S. (1992). Teachers’ beliefs about teaching and learning: A constructivist perspective. American Journal of Education 100(3): 354–395.
Russell, T. (2012). Science teacher education, self–study of teacher education practices, and the reflective turn. In Bullock, S. M., and Russell, T. (Eds.). Self–studies of science teacher education practices. (pp.193–199). Dordrecht: Springer.
Siri, A., Saejueng, P., and Wuttisela, K. (2015). Science concept survey on covalent and ionic compounds of students learning through students team achievement division incorporated with chemical bonding cards. Journal of Research Unit on Science, Technology and Environment for Learning 6(2): 198–208. (in Thai)
Smith, J. P., diSessa, A. A., and Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences 3(2): 115–163.
Sreebua, O., Jeeravipoolvarn, V., and Narjaikaew, P. (2015). Comparison of work and energy concepts and science process skills of grade 10 students between using 7Es learning circle supplemented with science activities and traditional teaching method. Journal of Research Unit on Science, Technology and Environment for Learning 6(2): 141–155. (in Thai)
Supasorn, S., Supasorn, N., Athiwaspong, W., and Phonchaiya, S. (2016). Development of conceptual understandings on solutions by using inquiry experiments in conjuncttion with particulate animations for grade 8 students. Journal of Research Unit on Science, Technology and Environment for Learning 7(1): 28–47. (in Thai)
Talanquer, V., Bolger, M., and Tomanek, D. (2015). Exploring prospective teachers’ assessment practices: Noticing and interpreting student understanding in the assessment of written work. Journal of Re-search in Science Teaching 52(5): 585–609.
Thawachmethee, S., Choomponla, C., and Janwatthanawong, R. (2015). Effects of constructivist learning approach supplemented with KWL plus strategy on work and energy conceptions of grade 10 students. Journal of Research Unit on Science, Technology and Environment for Learning 6(2): 217–231. (in Thai)
Yager, R. E. (1991). The constructivist learning model: Towards real reform in science education. The Science Teacher 58(6): 52–57.
Yang, C., Noh, T., Scharmann, L. C., and Kang, S. (2014). A study on the elementary school teachers’ awareness of students’ alternative conceptions about change of states and dissolution. The Asia–Pacific Education Researcher 23(3): 683–698.