การประเมินผลระหว่างเรียน: ประตูสู่การเติบโตทางวิชาชีพของครูวิทยาศาสตร์และการปฏิรูปการศึกษาวิทยาศาสตร์

Main Article Content

ลฎาภา ลดาชาติ

Abstract

Formative Assessment: A Gateway to Science Teachers’ Professional Growth and Science Education Reform
 
Ladapa Ladachart
 
รับบทความ: 20 ตุลาคม 2560; แก้ไขบทความ: 10 เมษายน 2561; ยอมรับตีพิมพ์: 3 สิงหาคม 2561
 
บทคัดย่อ
จุดยืนของบทความนี้คือเพื่อนำเสนอว่า การประเมินผลระหว่างเรียนเป็นแนวทางที่ส่งเสริมการเรียนรู้ของครูวิทยาศาสตร์ การพัฒนาความรู้ด้านเนื้อหาผสานวิธีสอน และการปฏิรูปการศึกษาวิทยาศาสตร์ ในการนี้ บทความเริ่มต้นด้วยนิยาม ลักษณะสำคัญ รูปแบบและแนวทางการประเมินผลระหว่างเรียนในฐานะกลไกที่สนับสนุนการจัดการเรียนการสอนวิทยาศาสตร์ จากนั้นอภิปรายความท้าทายที่ครูวิทยาศาสตร์อาจประสบในการประเมินผลระหว่างเรียน ตลอดจนความพยายามส่งเสริมให้ครูวิทยาศาสตร์ก้าวข้ามความท้าทายเหล่านั้น ซึ่งนำไปสู่ศักยภาพของการประเมินผลระหว่างเรียนในการผลิตและพัฒนาครูวิทยาศาสตร์และการปฏิรูปการศึกษาวิทยาศาสตร์ บทความยังเสนอแนะหัวข้อวิจัยเกี่ยวกับการประเมินผลระหว่างเรียนวิทยาศาสตร์ในบริบทของประเทศไทย
คำสำคัญ: การประเมินผลเพื่อการเรียนรู้  การประเมินผลระหว่างเรียน  การผลิตและพัฒนาครูวิทยาศาสตร์
Abstract
The position of this article is to present that formative assessment is an approach to facilitating science teachers’ learning, developing pedagogical content knowledge, and science education reform. In doing so, the article begins with definitions, key characteristics, formats and approaches to formative assessment as a mechanism that supports science instruction. Then, the article discusses challenges that science teachers might encounter when practicing formative assessment as well as efforts to facilitate science teachers to overcome those challenges. This leads to potentials that formative assessment has for science teacher education and science education reform. The article also highlights research topics about science formative assessment in Thai contexts.
Keywords: Assessment for learning; Formative assessment; Science teacher education

Downloads

Download data is not yet available.

Article Details

Section
บทความวิชาการ (Academic Article)

References

Allen, M. (2014). Misconceptions in Primary Science. Maidenhead: Open University.

Ash, D., and Levitt, K. (2003). Working within the zone of proximal development: Formative assessment and professional development. Journal of Science Teacher Education 14(1): 23–48.

Ayala, C. C., Shavelson, R. J., Ruiz-Primo, M. A., Brandon, P. R., Yin, Y., Furtak, E. M., Young, D. B., and Tomita, M. K. (2008). From formal embedded assessments to reflective lessons: The development of formative assessment studies. Applied Measurement in Education 21(4): 315–334.

Bell, B., and Cowie, B. (2001). The characteristics of formative assessment in science education. Science Education 85(5): 536–553.

Bell, B., and Cowie, B. (2002). Formative Assessment and Science Education. New York: Kluwer Academic.

Bennett, R. E. (2011). Formative assessment: A critical review. Assessment in Education: Principle. Policy, and Practice 18(1): 5–25.

Black, P., Harrison, C., Lee, C., Marshall, B., and William, D. (2003). Assessment for Learning: Putting It into Practice. New York: Open University.

Black, P., and William, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy and Practice 5(1): 7–74.

Black, P., Wilson, M., and Yao, S. (2011). Road maps for learning: A guide to the navigation of learning progression. Measurement 9(2): 71–123.

Buck, G. A., and Trauth-Nare, A. E. (2009). Preparing teachers to make the formative assessment process integral to science teaching and learning. Journal of Science Teacher Education 20(5): 475–494.

Buck, G. A., Trauth-Nare, A., and Kaftan, J. (2010). Making formative assessment discernable to pre–service teachers of science. Journal of Research in Science Teaching 47(4): 402–421.

Bybee, R. W., Taylor, J. A., Gardner, A., Scotter, P. V., Powell, J. C., Westbrook, A., and Landes, N. (2006). The BSCS 5E Instructional Model: Origins, Effectiveness, and Applications. Retrieved from http:// bscs.org/sites/default/files/_legacy/BSCS_5E_Instructional_Model-Executive_ Summary_0.pdf, April 4, 2014.

Clement, J., and Zietsman, A. (1989). Not all preconceptions are misconceptions: Finding ‘anchoring conceptions’ for grounding instruction on students’ intuitions. Inter-national Journal of Science Education 11(special issue): S54–S65.

Coffey, J. E., Hammer, D., Levin, D. M., and Grant, T. (2011). The missing disciplinary substance of formative assessment. Journal of Research in Science Teaching 48(10): 1109–1136.

DeBoer, G. E. (2006). Historical perspective on inquiry teaching in schools. In Flick, L., and Lederman, N. (Eds.). Scientific Inquiry and the Nature of Science: Implications for Teaching, Learning, and Teacher Education. (pp. 17–35). Dordrecht: Kluwer Academic.

diSessa, A. A. (2002). What “conceptual eco-logy” is a good idea. In Limon, M., and Masson, L. (Eds.). Reconsidering Conceptual Change: Issues in Theory and Practice. (pp. 29–60). Dordrecht: Kluwer Academic.

Duschl, R. A., and Gitomer, D. H. (1997). Strategies and challenges to changing the focus of assessment and instruction in science classrooms. Educational Assessment 4(1): 37–73.

Duschl, R., Maeng, S., and Sezen, A. (2011). Learning progressions and teaching se-quences: A review and analysis. Studies in Science Education 47(2): 123–182.

Falk, A. (2012). Teachers learning from professional development in elementary science: Reciprocal relations between formative assessment and pedagogical con-tent knowledge. Science Education 96(2): 265–290.

Fuller, F. F. (1969). Concerns of teachers: developmental conceptualization. American Educational Research Journal 6(2): 207–225.

Furtak, E. M. (2012). Linking a learning progression for natural selection to teachers’ enactment of formative assessment. Journal of Research in Science Teaching 49(9): 1181–1210.

Gomez-Zwiep, S. (2008). Elementary teachers’ understanding of students’ science misconceptions: Implications for practice and Teacher Education. Journal of Science Teacher Education 19(5): 437–454.

Gottheiner, D. M., and Siegel, M. A. (2012). Experienced middle school science teachers’ assessment literacy: Investigating knowledge of students’ conceptions in genetics and ways to shape instruction. Journal of Science Teacher Education 23(5): 531–557.

Hammer, D., Goldberg, F., and Fargason, S. (2012). Responsive teaching and the beginnings of energy in a third grade class-room. Review of Science, Mathematics and ICT Education 6(1): 51–72.

Kang, H., and Anderson, C. W. (2015). Supporting preservice science teachers’ ability to attend and respond to student thinking by design. Science Education 99(5): 863–895.

Keeley, P. (2008). Science Formative Assessment: 75 Practical Strategies for Linking Assessment, Instruction, and Learning. California: Corwin.

Ketsing, J., and Roadrangka, V. (2011). Inquiry–based instruction for science teaching. Journal of Humanities and Social Sciences Mahasarakham University 30(1): 84–105. (in Thai)

Kijkuakul, S. (2015). STEM education. Journal of Education Naresuan University 17(2): 201–207. (in Thai)

Ladachart, L. (2013). Inquiring Mind Project: Past, Present and Future. Retrieved from http://www.inquiringmind.in.th/publications, October 8, 2017. (in Thai)

Ladachart, L. (2015). Qualitative Research for Science Teachers. Bangkok: Chulalongkorn University. (in Thai)

Ladachart, L. (2016). Learning progressions in science. Journal of Research Unit on Science, Technology and Environment for Learning 7(1): 141–162. (in Thai)

Ladachart, L. and Ladachart, L. (2016). From students’ explanations towards a way to learning design about global warming. Journal of Research Unit on Science, Technology and Environment for Learning 7(1): 88–102. (in Thai)

Ladachart, L., Nashon, S. M., and Roadrangka, V. (2010). A Thai physics teacher’s conceptual difficulties while teaching unfamiliar content. KKU Research Journal 15(4): 304–316.

Ladachart, L., and Yuenyong, C. (2017). Using Scientific–inquiry activities for developing teachers’ and supervisors’ scientific literacy. Kasetsart Journal of Social Sciences 38(1): 482–492. (in Thai)

Larkin, D. (2012). Misconceptions about “misconceptions”: Preservice secondary science teachers’ views on the value and role of student ideas. Science Education 96(5): 927–959.

Lemke, J. L. (1990). Talking Science: Language, Learning, and Values. Norwood, NJ: Ablex.

Levin, D. M., Hammer, D., and Coffey, J. E. (2009). Novice teachers’ attention to student thinking. Journal of Teacher Education 60(2): 142–154.

Magnusson, S., Krajcik, J., and Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In Gess-Newsome, J., and Lederman, N. G. (Eds.). Examining Pedagogical Content Knowledge: The Construct and Its Implications for Science Education. (pp. 95–132). Netherlands: Springer.

Meyer, H. (2004). Novice and expert teachers’ conceptions of learners’ prior knowledge. Science Education 88(6): 970–983.

Ministry of Education. (2001). Legislative Educational Terminologies. Bangkok: Department of Academics. (in Thai)

Morrison, J. A., and Lederman, N. G. (2003). Science teachers’ diagnosis and understanding of students’ preconceptions. Science Education 87(6): 849–867.

Naiyapatana, O. (2010). Assessment in class-room: Evolution and new thought for learning. Srinakharinwirot Research and Development (Journal of Humanities and Social Sciences) 2(3): 1–12. (in Thai)

National Research Council [NRC]. (2000). Inquiry and the National Science Education Standards: A Guide for Teaching and Learning. Washington, DC: The National Academies.

National Research Council [NRC]. (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Washington, DC: The National Academies.

Office of the Education Council [OEC]. (2002). The National Education Act B.E. 2542 (Amendments B.E. 2545). Bangkok: Prikwarn Graphic. (in Thai)

Organisation for Economic Co–operation and Development [OECD]. (2005). Formative Assessment: Improving Learning in Secondary Classrooms. Retrieved from https://www.oecd.org/edu/ceri/3566 1078.pdf, April 22, 2016.

Organisation for Economic Co–operation and Development [OECD]. (2008). Assessment for Learning. Retrieved from http:// www.oecd.org/site/educeri21st/40600533.pdf, April 22, 2016.

Otero, V. K. (2006). Moving beyond the “get it or don’t” conception of formative assessment. Journal of Teacher Education 57(3): 247–255.

Otero, V. K., and Nathan, M. (2004). “After I gave students their prior knowledge…” pre–service teachers’ conceptions of student prior knowledge. AIP Conference Proceedings 720(141): doi:http://dx.doi.

org/10.1063/1.1807274.

Otero, V. K., and Nathan, M. (2008). Pre-service elementary teachers’ views of their students’ prior knowledge of science. Journal of Research in Science Teaching 45(4): 497–523.

Pansiri, W., Lapanachokdee, W., and Ekwarangkoon, P. (2016). The development of the assessment for learning model of mathematics for Rajamangala University of Technology Rattanakosin. Journal of Education Mahasarakham University 10(4): 115–132. (in Thai)

Park, S., and Chen, Y. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK): Examples from high school biology class-rooms. Journal of Research in Science Teaching 49(7): 922–941.

Park, S. and Oliver, S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professsionals. Research in Science Education 38(3): 261–284.

Phornphisutthimas, S. (2014). How do learning assessments assist learners to effectively learn sciences in the 21st century? RMUTSB Academic Journal 2(1): 81–90. (in Thai)

Posner, G. J., Strike, K. A., Hewson, W., and Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education 66(2): 211–227.

Ritcharoon, P. (2016). Assessment for learning development. STOU Education Journal 9(1): 1–17. (in Thai)

Ruiz-Primo, M. A. and Furtuk, E. M. (2006). Informal formative assessment and scientific inquiry: Exploring teachers’ practices and student learning. Educational Assessment 11(3&4): 205–235.

Ruiz-Primo, M. A., and Furtuk, E. M. (2007). Exploring teachers’ informal formative assessment practices and students’ under-standing in the context of scientific inquiry. Journal of Research in Science Teaching 44(1): 57–84.

Russ, R. S., Coffey, J. E., Hammer, D., and Hutchison, P. (2009). Making classroom assessment more accountable to scien-tific reasoning: A case for attending to mechanistic thinking. Science Education 93(5): 875–891.

Sabel, J. L., Forbes, C. T., and Zangori, L. (2015). Promoting prospective elementary teachers’ learning to use formative assessment for life science instruction. Journal of Science Teacher Education 26(4): 419–445.

Sadler, D. R. (1989). Formative assessment and the design of instructional systems. Instructional Science 18(2): 119–144.

Schneider, R. M., and Plasman, K. (2011). Science teacher learning progressions: A review of science teachers’ pedagogical content knowledge development. Review of Educational Research 81(4): 530–565.

Sezen-Barrie, A., and Kelly, G. J. (2017). From the teacher’s eyes: Facilitating teachers noticing on informal formative assessments (IFAs) and exploring the challenges to effective implementation. International Journal of Science Education 39(2): 181–212.

Shavelson, R. J., Young, D. B., Ayala, C. C., Brandon, P. R., Furtak, E. M., Ruiz-Primo, M. A., Tomita, M. K., and Yin, Y. (2008). On the impact of curriculum–embedded formative assessment on learning: A collaboration between curriculum and assessment developers. Applied Measurement in Education 21(4): 295–314.

Shepard, L. A. (2000). The role of assessment in a learning culture. Educational Researcher 29(7): 1–14.

Shulman, L. S. (1986). Those who under-stand: Knowledge growth in teaching. Educational Researcher 15(2): 4–14.

Suttakun, L., and Ladachart, L. (2013a). Fourth grade students’ scientific reasoning. Naresuan University Journal: Science and Technology 21(3): 107–123. (in Thai)

Suttakun, L., and Ladachart, L. (2013b). Sixth graders’ mental model about magnet and magnetic force. Humanities and Social Science Journal, Ubon Ratchathani University 4(1): 90–105. (in Thai)

Talanquer, V., Bolger, M., and Tomanek, D. (2015). Exploring prospective teachers’ assessment practices: Noticing and interpreting student understanding in the assessment of written work. Journal of Re-search in Science Teaching 52(5): 585–609.

The Institute for the Promotion of Teaching Science and Technology [IPST]. (2013). Results of PISA 2012 in Mathematics, Reading and Science: Executive Summary. Samut Prakan: Advance Printing Service. (in Thai)

The Institute for the Promotion of Teaching Science and Technology [IPST]. (2014). STEM Education. Retrieved from http:// www.stemedthailand.org/wp-content/up loads/2015/03/Intro-to-STEM.pdf, De-cember 12, 2016. (in Thai)

van Driel, J. H., Verloop, N., and de Vos, W. (1998). Developing science teachers’ pedagogical content knowledge. Journal of Research in Science Teaching 35(6): 673–695.

Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes. Cambridge: Hardvard University.

White, R., and Gunstone, R. (1992). Probing Understanding. London: The Falmer.

Yager, R. E. (1991). The Constructivist learning model: Towards real reform in science education. The Science Teacher 58(6): 52–57.

Yin, X., and Buck, G. A. (2015). There is another choice: An exploration of integrating formative assessment in a Chinese high school chemistry classroom through collaborative action research. Cultural Studies of Science Education 10(3): 719–752