ถ่านกัมมันต์จากวัสดุเหลือใช้ทางการเกษตรโดยการกระตุ้นทางเคมีเพื่อการประยุกต์ใช้กำจัดสารมลพิษในน้ำ

Main Article Content

ธีรดิตถ์ โพธิตันติมงคล

Abstract

Activated Carbon from Agricultural Residues by Chemical Activation for the Application of Pollutant Removal in Water
 
Theeradit  Phothitontimongkol
 
รับบทความ: 21 เมษายน 2559; ยอมรับตีพิมพ์: 9 พฤษภาคม 2560
 
บทคัดย่อ
บทความฉบับนี้มีวัตถุประสงค์เพื่อทบทวน สรุปประเด็น และเผยแพร่ความรู้เกี่ยวกับการเตรียมถ่านกัมมันต์จากวัสดุเหลือใช้ทางการเกษตรด้วยวิธีการกระตุ้นทางเคมีเพื่อใช้กำจัดสารมลพิษในน้ำ ถ่านกัมมันต์เป็นวัสดุที่มีลักษณะโครงสร้างที่มีพื้นที่ผิวและปริมาตรรูพรุนสูงประมาณ 600 – 2,400 ตารางเมตรต่อกรัม และ 0.20 – 1.00 ลูกบาศก์เซนติเมตรต่อกรัม ตามลำดับ โดยมีธาตุคาร์บอนเป็นองค์ประกอบหลักประมาณร้อยละ 80 – 90 ซึ่งได้จากวัสดุเหลือใช้ทางการเกษตร เช่น ฟางข้าว ซังข้าวโพด กะลามะพร้าว ขุยมะพร้าว เปลือกปาล์ม ไม้เนื้อแข็ง ขั้นตอนในการเตรียมถ่านกัมมันต์มี 2 ขั้นตอน คือ การคาร์บอไนซ์ และการกระตุ้น ในขั้นตอนการกระตุ้นมี 2 วิธี ได้แก่ การกระตุ้นทางกายภาพและการกระตุ้นทางเคมี เมื่อเปรียบเทียบการกระตุ้นทางกายภาพและทางเคมี พบว่า การกระตุ้นทางเคมีมีการศึกษาและนำไปใช้งานมากกว่าการกระตุ้นทางกายภาพ เนื่องจากใช้อุณหภูมิต่ำและระยะเวลาน้อยในการกระตุ้น แต่ได้ถ่านกัมมันต์ที่พื้นที่ผิวและปริมาตรรูพรุนสูง สารเคมีที่นิยมนำมาใช้ในการกระตุ้น ได้แก่ ซิงก์คลอไรด์ กรดฟอสฟอริก และโพแทสเซียมไฮดรอกไซด์ ถ่านกัมมันต์จากวัสดุเหลือใช้ทางการเกษตรที่ผลิตได้มีการนำไปใช้เป็นตัวดูดซับในกระบวนการดูดซับ ซึ่งเป็นการกำจัดสารมลพิษในน้ำที่ใช้งานอย่างแพร่หลาย และพบว่าถ่านกัมมันต์จากวัสดุเหลือใช้ทางการเกษตรสามารถกำจัดสารมลพิษต่างๆ ได้แก่ โลหะหนัก สีย้อม สารกลุ่มฟีนอล สารฆ่าแมลง และศัตรูพืชในน้ำได้อย่างมีประสิทธิภาพ
คำสำคัญ: ถ่านกัมมนต์  วัสดุเหลือใช้ทางการเกษตร  การกระตุ้น  การกำจัดสารมลพิษ
 
Abstract
The article aimed to focus on the literature reviews, summaries and disseminations of knowledge about the preparation of activated carbon from agricultural residues by chemical activation for the application of pollutant removal in water. The high surface area and pore volume of activated carbon is 600 – 2,400 m2/g and 0.20 – 1.00 cm3/g, respectively. Their component is consisted of 80 – 90% of carbon.  Agricultural residues, e.g., rice straw, corncob, coconut shell, coconut coirpith, palm shell, hardwood, can be used for the preparation of activated carbon. The preparation of activated carbon comprises two steps including the carbonization and activation. In addition, the activation step can be classified into two methods: physical and chemical activation.  Chemical activation is, however, applied to prepare activated carbon more than physical activation due to lower temperature and less time consuming with high surface area and pore volume of activated carbon. The chemical agents, such as ZnCl2 H3PO4 and KOH are favorably used for the activation. Activated carbons from agricultural residues are applied as absorbent in the adsorption process and widely used for the pollutants removal in water. It is found that the efficiency of activated carbon from agricultural residues can be used to remove the pollutants, e.g., heavy metals, dyes, phenols and pesticides, in water.
Keywords: Activated carbon, Agricultural residues, Activation, Pollutant removal

Downloads

Download data is not yet available.

Article Details

Section
บทความวิชาการ (Academic Article)

References

Acharya, J., Sahu, J. N., Mohanty, C. R., and Meikap, B. C. (2009). Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal 149: 249–262.

Acharya, J., Sahu, J. N., Mohanty, C. R., and Meikap, B. C. (2009). Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chemical Engineering Journal 150: 25–39.

Anirudhan, T. S., and Sreekumari, S. S. (2011). Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut but-tons. Journal of Environmental Sciences 23(12): 1989–1998.

Bouchelta, C., Medjram, M. S., Bertrand, M., and Bellat, J. P. (2008). Preparation and characterization of activated carbon from date stones by physical activation with steam. Journal of Analytical and Applied Pyrolysis 82: 70–77.

Budinova, T., Ekinci, E., Yardim, F., Grimm, A., Bjornbom, E., Minkova, V., and Goranova, M. (2006). Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Processing Technology 87: 899–905.

Chaouch, N., Ouahrani, M. R., and Laouini, S. E. (2014). Adsorption of lead(II) from aqueous solutions onto activated carbon prepared from algerian dates stones of Phoenix dactylifera L. (Ghars variety) by H3PO4 activation. Oriental Journal of Chemistry 30(3): 1317–1322.

Demiral, H., Demiral, İ., Karabacakoğlu, B., and Tümsek, F. (2011). Production of activated carbon from olive bagasse by physical activation. Chemical Engineering Research and Design 89: 206–213.

Fan, J., Jian, Zhang, J., Zhang, C., Ren, L., and Shi, Q. (2011). Adsorption of 2, 4, 6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife. Desalination 267: 139–146.

Fathy, N. A., Sayed, S. A., and El-enin, R. M. M. A. (2012). Effect of activation temperature on textural and adsorptive properties for activated carbon derived from local reed biomass: Removal of p-Nitrophenol. Environmental Research, Engineering and Management 59(1): 10–22.

Foo, K. Y., and Hameed, B. H. (2010). Decontamination of textile wastewater via TiO2/activated carbon composite materials. Advances in Colloid and Interface Science 159: 130–143.

Hadoun, H., Sadaoui, Z., Souami, N., Sahel, D., and Toumert, I. (2013). Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation. Applied Surface Science 280: 1–7.

Hameed, B. H., Salman, J. M., and Ahmad, A. L. (2009). Adsorption isotherm and kinetic modeling of 2, 4-D pesticide on activated carbon derived from date stones. Journal of Hazardous Materials 163: 121–126.

Hesas, R. H., Arami, A. N., Duad, W. M. A., and Sahu, J. N. (2013). Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation. Journal of Analytical and Applied Pyrolysis 104: 176–184.

Ioannidou, O., and Zabaniotou, A. (2007). Agricultural residues as precursors for ac-tivated carbon production – A review. Renewable and Sustainable Energy Reviews 1: 1966–2005.

Jun, T. Y., Arumugam, S. D., Latip, N. H. A., Abdullah, A. M., and Latif, P. A. (2010). Effect of activation temperature and heating duration on physical characteristics of activated carbon prepared from agriculture waste. Environment Asia 3: 143–148.

Kadirvelu, K., and Namasivayam, C. (2003). Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Advances in Environmental Research 7: 471–478.

Kadirvelu, K., Thamaraiselvi, K., and Namasivayam, C. (2001). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology 24: 497–505.

Kaosuah, F., Kaouah, B., Berrama, T., Trai, M., and Bendjama, B. (2013). Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46. Journal of Cleaner Production 54: 296–306.

Kobya, M., Demirbas, E., Senturk, E., and Ince, M. (2005). Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology 96: 1518–1521.

Liu, S. L., Wang, Y. N., and Lu, K. T. (2014). Preparation and pore characterization of activated carbon from Ma bamboo (Dendrocalamus latiflorus) by H3PO4 chemical activation. Journal of Porous Materials 21: 459–466.

Lo, S. F., Wang, S. Y., Tsai, M. J., and Lin, L. D. (2012). Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research and Design 90: 1397–1406.

Maneechakr, P. (2012).Preparation of activated carbon from the seed of Terminalia catappa. Apheit Journals 18(1): 119–128. (in Thai)

Manoochehri, M., Khorsand, A., and Hashemi, E. (2012). Role of activated carbon modified by H3PO4 and K2CO3 from natural adsorbent for removal of Pb(II) from aqueous solutions. Carbon Letters 13(3): 167–172.

Mestre, A. S., Pires, R. A., Aroso, I., Fernandes, E. M., Pinto, M. L., , Reis, R. L., An-drade, M. A., Pires, J., Silva, S. P., and Caryalho, A. P., C. (2014). Activated carbons prepared from industrial pretreated cork: Sustainable adsorbents for pharmaceutical compounds removal. Chemical Engineering Journal 253: 408–417.

Monreno-Castilla, C., Carrasco-Marin, F., López-Ramón, V., Alvarez-Merino, M. A. (2001). Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon 39: 1415–1420.

Mopoung, S. (2015).Activated caron. Phitsanulok: Naresuan University. (in Thai)

Moyo, M., Chikazaza, L., Chomunorwa, B., and Guyo, U. (2013). Adsorption batch studies on the removal of Pb(II) using Maize Tassel based activated carbon. Journal of Chemistry Article ID508934.

Office of Industrial Economics. (2014). The Summary of Economic Circumstance Industry A. D. 2014 and the tendency of A. D. 2015. Bangkok: Ministry of Industry Thailand. (in Thai)

Omri, A., Lambert, S. D., Geens, J., Bennour, F., and Benzina, M. (2014). Synthesis, surface characterization and photocatalytic activity of TiO2 supported on almond shell activated carbon. Journal of Materials Science & Technology 30(9): 894–902.

Ould-Idriss, A., Stitou, M., Cuerda-Correa, E. M., Fernández-González, C., Macías-García, A., Alexandre-Franco, M.F., and Gómez-Serrano, V. (2011). Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4. Fuel Processing Technology 92: 261–265.

Prahas, D., Kartika, Y., and Indraswati, N., Is-madji, S. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal 140: 32–42

Qin, C., Chen, Y., and Gao, J. (2014). Man-ufacture and characterization of acti-vated carbon from marigold straw (Tagetes erecta L.) by H3PO4 chemical acti-vation. Materials Letters 135: 123–126.

Rahman, M. M., Adil, M., Yusof, A. M, Kamaruzzaman, Y. B., and Ansary, R. H. (2014). Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells. Materials 7: 3634–3650.

Rajappa, A., Ramesh, K., and Nandhakumar, V. (2014). Removal of congo red dye from aqueous solution using ZnCl2 activated carbon prepared from Delonix regia pods (Flame Tree). International Journal of Chemistry and Pharmaceutical Sciences 2(7): 961–971.

Sahu, J. N., Jyotikusum, A., and Meikap, B.C. (2010). Optimization of production conductions for activated carbons from Tamarind wood by zine chloride using response surface methodology. Bioresource Technology 101: 1974–1982.

Saka, C. (2012). BET, TG–DTG, FT–IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. Journal of Analytical and Applied Pyrolysis 95: 21–24.

Salman, J. M., Njoku, V. O., and Hameed, B. H. (2011). Bentazon and carbofuran adsorption onto date seed activated carbon: Kinetics and equilibrium. Chemical Engineering Journal 173: 361–368.

Sayğili, H., Güzel, F., and Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production 93: 84–93.

Singh, C. K., Sahu, J. N., Mahalik, K. K., Mohanty, C. R., Raj Mohan, B., and Meikap, B.C. (2008). Studies on the removal of Pb(II)from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid. Journal of Hazardous Materials 153: 221–228.

Sricharoenchaikul, V., Pechyen, C., Aht-ong, D., and Atong, D. (2008). Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy Fuels 22(1): 31–37.

Srinivasakannan, C. S., and Bakar, M. Z. A. (2004). Production of activated carbon from rubber wood sawdust. Biomass & Bioenergy 27: 89–96.

Sugumaran, P., Priya Susan, V., Ravichandran, P., and Seshadri, S. (2012). Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod. Journal of Sustain-able Energy & Environment 3: 125–132.

Sun, K., and Jiang, J. C. (2010). Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass and Bioenergy 34: 539–544.

Tan, I. A. W., Ahmad, A. L., and Hameed, B. H. (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials 154: 337–346.

Tan, I. A. W., Ahmad, A. L., and Hameed, B. H. (2008). Preparation of activated carbon from coconut husk: Optimization study on removal of 2, 4, 6-trichlorophenol using response surface methodology. Journal of Hazardous Materials 153: 709–717.

Tan, I. A. W., Ahmad, A. L., and Hameed, B. H. (2009). Fixed-bed adsorption performance of oil palm shell-based activated carbon for removal of 2, 4, 6-trichlorophenol. Bioresource Technology 100: 1494–1496.

Temtarasilp, P. (2008). Preparation and characterization of activated carbon from Dendrocalamus asper Backer and Dendrocalamus Latiflorus. Master of Science (Chemistry). Bangkok: Kasetsart University. (in Thai)

Virginia, H. M., and Adrián, B. P. (2012). Lignocellulosic Precursors used in the Synthesis of Activated Carbon: Characterization Techniques and Applications in the Wastewater Treatment. Croatia: InTech.

Vitidsant, T. (2011). Activated carbon: Production and application. 2nd ed. Khon Kaen: Klangnanavithaya. (in Thai)

Yagmur, E., Tunc, M. S., Banford, A., and Zeki, A. (2013). Preparation of activated carbon from autohydrolysed mixed southern hardwood. Journal of Analytical and Applied Pyrolysis 104: 470–478.

Yakout, S. M., and Sharaf, G. (2012). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry 9(2): S1155–S1162.

Yavuz, O., and Aydin, A. H. (2006). Removal of direct dyes from aqueous solution using various adsorbents. Polish Journal of Environmental Studies 15(1): 155–161.

Zhang, H., Tang, Y., Cai, D., Liu, X., Wang, X., Huang, Q., and Yu, Z. (2010). Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: Equilibrium and kinetic studies. Journal of Hazardous Materials 181: 801–808.

Zhang, T., Walawender, W. P., Fan, L. T., Fan, M., Daugaard, D., and Brown, R. C. (2004). Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chemical Engineering Journal 105: 53–59.

Zhang, Z., Yu, F., Huang, L., Juatieli, J., Li, Y., Song, L., Yu, N., and Dionysiou, D. D. (2014). Confirmation of hydroxyl radicals (•OH) generated in the presence of TiO2 Supported on AC under microwave irradiation. Journal of Hazardous Materials 278: 152–157.