การคัดกรองเบื้องต้นเพื่อหาเชื้อราสาเหตุโรคพืชสำหรับใช้เป็นสิ่งควบคุมโดยชีววิธีของผักตบชวา (Eichhornia crassipes (Mart.) Solms)
Main Article Content
Abstract
Chawin Asavasaetakul and Krieng Kanchanawatee*
รับบทความ: 10 กรกฎาคม 2564; แก้ไขบทความ: 29 กรกฎาคม 2564; ยอมรับตีพิมพ์: 31 กรกฎาคม 2564; ตีพิมพ์ออนไลน์: 12 ตุลาคม 2564
บทคัดย่อ
การควบคุมโดยชีววิธีเป็นวิธีการที่ทั่วโลกยอมรับว่าเป็นวิธีจัดการผักตบชวา (Eichhornia crassipes) ที่มีความคุ้มค่าและนำไปใช้ได้จริง แต่การศึกษาวิจัยในเรื่องดังกล่าวมีอยู่อย่างจำกัดในประเทศไทย โดยเฉพาะอย่างยิ่งการคัดกรองเพื่อหาสิ่งควบคุมโดยชีววิธีชนิดใหม่ ผู้วิจัยได้สุ่มเก็บตัวอย่าง E. crassipes ที่แสดงอาการของโรคจาก 2 แหล่ง และแยกเชื้อราออกจากตัวอย่างได้ทั้งหมด 14 ไอโซเลต นำเชื้อราที่ได้เข้าสู่ใบ E. crassipes ที่ปราศจากโรคผ่านทางบาดแผลหรือไม่ผ่านบาดแผลเป็นเวลา 7 วัน ผู้วิจัยพบว่าเชื้อรา Alternaria sp. ไอโซเลต WH–06 มีความรุนแรงในการก่อโรคมากที่สุด โดยเชื้อรา Alternaria sp. ไอโซเลต WH–06 สามารถทำให้เกิดอาการของโรคที่เหมือนกันระหว่างการทดสอบบนใบที่ถูกและไม่ถูกตัดจากต้น อาการของโรคประกอบด้วยเนื้อเยื่อตายสีดำและสีน้ำตาลที่ล้อมรอบด้วยวงสีเหลืองที่เกิดจากภาวะพร่องคลอโรฟิลล์ (chlorosis) เมื่อศึกษาวิจัยต่อไปคาดว่าเชื้อรา Alternaria sp. ไอโซเลต WH–06 มีศักยภาพที่จะใช้เป็นสิ่งควบคุมโดยชีววิธีที่มีประสิทธิภาพ โดยมีความเป็นไปได้ที่จะใช้เชื้อราชนิดนี้ผ่านการจัดการศัตรูพืชแบบผสมผสาน (integrated pest management) ร่วมกับแมลงที่สามารถกิน E. crassipes ได้
คำสำคัญ: ผักตบชวา เชื้อราสาเหตุโรคพืช การควบคุมโดยชีววิธี ศัตรูพืชทางน้ำ
Abstract
Biological control is globally recognized as a cost–effective and practical management mechanism of water hyacinth, Eichhornia crassipes, but limited research has been done in Thailand, especially for screening novel biological control agents. We collected the diseased E. crassipes from two sampling sites where 14 fungal isolates were isolated. Unwounded and wounded inoculation was conducted on healthy E. crassipes leaves in a controlled environment. Seven days after inoculation, we found that the Alternaria sp. isolate WH–06 was the most virulent isolate. Alternaria sp. isolate WH–06 was able to produce similar disease symptoms between the detached leaves and whole plants. The symptoms included black and brown necrotic tissues surrounded by a yellow halo of chlorosis. With further studies, Alternaria sp. isolate WH-06 has the potential to be an effective biological control agent, possibly through integrated pest management with E. crassipes feeding insects.
Keywords: Water hyacinth, Phytopathogenic fungi, Biological control, Aquatic pest
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Al–Juboory, H. H. and Musa, H. S. (2018). Detection of fungi associated with water hyacinth Eichhornia crassipes in Iraq and their pathogenicity under controlled condition. Journal of Biodiversity and Environmental Sciences (JBES) 12(2): 24–31.
Babu, R. M., Sajeena, A., Seetharaman, K., Vidhyasekaran, P., Rangasamy, P., Prakash, M. S., Raja, A. S. and Biji, K. R. (2002). Host range of Alternaria alternata—A potential fungal biocontrol agents for waterhyacinth in India. Crop Protection 21(10): 1083–1085.
Barzman, M., Bàrberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt–Saaydeh, S., Graf, B., Hommel, B., Jensen, J. E., Kiss, J., Kudsk, P., Lamichhane, J. R., Messéan, A., Moonen, A. C., Ratnadass, A., Ricci, P., Sarah, J. L., and Sattin, M. (2015). Eight principles of integrated pest management. Agronomy for Sustainable Development 35, 1199–1215.
Charudattan, R. (2001). Biological control of water hyacinth by using pathogens : opportunities, challenges, and recent developments. Proceedings of the Second Meeting of the Global Working Group for the Biological and Integrated Control of Water Hyacinth. No 135372, ACIAR Proceedings Series, Australian Centre for International Agricultural Research.
Charudattan, R. (2008). Biocontrol efficacy of Cercospora rodmanii on water hyacinth. Phytopathology 75(11): 1263–1269.
Charudattan, R., and Conway, K. E. (1975). Comparison of Uredo eichhorniae, the water–hyacinth rust, and Uromyces pontederiae. Mycologia 67(3): 653–657.
Choi, Y.–W., Hyde, K. D., and Ho, W. H., (1999). Single spore isolation of fungi. Fungal Diversity 3: 29–38.
Clark, K., Karsch–Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W. (2016). GenBank. Nucleic Acids Research 44: D67–D72.
Coetzee, J. A., Hill, M. P., Ruiz–Téllez, T., Starfinger, U., and Brunel, S. (2017). Mono-graphs on invasive plants in Europe N° 2: Eichhornia crassipes (Mart.) Solms. Botany Letters 164(4): 303–326.
Conway, K. (2011). Cercospora rodmanii, a new pathogen of water hyacinth with biological control potential. Canadian Journal of Botany 54: 1079–1083.
Dagno, K., Lahlali, R., Diourté, M. and Jijakli, H. M. (2011). Production and oil–emulsion formulation of Cadophora malorum and Alternaria jacinthicola, two biocontrol agents against water hyacinth (Eichhornia crassipes). African Journal of Microbiology Research 5(8): 924–929.
Dagno, K., Lahlali, R., Diourte, M., and Jijakli, M. H. (2012). Fungi occurring on waterhyacinth Eichhornia crassipes [Martius] Solms–Laubach in Niger river in Mali and their evaluation as mycoherbicides. Journal of Aquatic Plant Management 50: 25–32.
El–Morsy, E. M. (2004). Evaluation of microfungi for the biological control of water hyacinth in Egypt. Fungal Diversity 16: 35–51.
El–Morsy, E. S. M., El–Dohlob, S. M., and Hyde, K. D. (2006). Diversity of Alternaria alternata a common destructive pathogen of Eichhornia crassipes in Egypt and its potential use in biological control. Fungal Diversity 23: 139–158.
Elwakil, M., Sadik, E. A., Fayzalla, E. A., and Shabana, Y. (1988). Biological control of waterhyacinth with fungal plant pathogens in Egypt. Proceedings of the VI International Symposium on the Biological Control of Weeds (pp. 483–497). Rome, Italy: CSIRO.
Firehun, Y., Struik, P. C., Lantinga, E. A., and Taye, T. (2013). Joint use of insects and fungal pathogens in the management of waterhyacinth (Eichhornia crassipes): Perspectives for Ethiopia. Journal of Aquatic Plant Management 51: 109–121.
Harding, D. P., and Raizada, M. N. (2015). Controlling weeds with fungi, bacteria and viruses: A review. Frontiers in Plant Science 6: 659.
Hoagland, R. E., Boyette, C. D., Weaver, M. A., and Abbas, H. K. (2007). Bioherbicides: Research and risks. Toxin Reviews 26: 313–342.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.
Kogan, M. (1998). Integrated pest management: Historical perspectives and contemporary developments. Annual Review of Entomology 43: 243–270.
Lata, N., and Dubey, V. (2010). Eichhornia crassipes a suitable economic feed: The world’s worst aquatic weed. Journal of Food Technology 8(3): 102–105.
Walker, H. L., and Tilley, A. M. (1997). Evaluation of an isolate of Myrothecium verrucaria from sicklepod (Senna obtusffolia) as a potential mycoherbicide agent. Biological Control 10(2): 104–112.
Martinez J. M., and Charudattan, R. (1998). Survey and evaluation of Mexican native fungi for potential biocontrol of waterhyacinth. Journal of Aquatic Plant Management 36: 145–148.
Martinez, J. M., and Gómez, B. (2007). Integrated control of Eichhornia crassipes by using insects and plant pathogens in Mexico. Crop Protection 26(8): 1234–1238.
Martyn, R. D. (1985). Waterhyacinth decline in Texas caused by Cercospora piaropi. Journal of Aquatic Plant Management 23: 29–32.
Napompeth, B. (1994). Biological control of paddy and aquatic weeds in Thailand. In Integrated Management of Paddy and Aquatic Weeds in Asia (pp.32–35). Taiwan: Food and Fertilizer Technology Center for the Asian and Pacific Region.
Nuangmek, W., Khongderm, C., and Tityavan, M. (2014). Integrated control of water hyacinth (Eichornia crassipes) by using hyacinth weevil and fungus Alternaria sp. Khon Kaen Agriculture Journal 42: 677–682. (in Thai)
Nuangmek, W., and Titayavan, M. (2013). Potentiality use of Alternaria sp. as bioherbicide to control of water hyacinth (Eichornia crassipes) in Kwan Phayao. Khon Kaen Agriculture Journal 41: 498–504. (in Thai)
Piyaboon, O., Unartngam, A., and Unartngam, J. (2014). Effectiveness of Myrothecium roridum for controlling water hyacinth and species identification based on molecular data. African Journal of Microbiology Research 8(13): 1444–1452.
Pettitt, T. R., Wainwright, M. F., Wakeham, A. J., and White, J. G. (2011). A simple detached leaf assay provides rapid and inexpensive determination of pathogenicity of Pythium isolates to “all year round” (AYR) chrysanthemum roots. Plant Pathology 60(5): 946–956.
Rai, D. N., and Munshi, J. D., (1979). The influence of thick floating vegetation (Water hyacinth: Eichhornia crassipes) on the physico–chemical environment of a fresh water wetland. Hydrobiologia 62(1): 65–69.
Rintz, R. E. (1973). Zonal leaf spot of waterhyacinth caused by Cephalosporium zonatum. Hyacinth Control Journal 11: 41–44.
Shabana, Y. M., Charudattan, R., and Elwakil, M. A. (1995a). Identification, pathogenicity, and safety of Alternaria eichhorniae from Egypt as a bioherbicide agent for waterhyacinth. Biological Control 5(2): 123–135.
Shabana, Y. M., Charudattan, R., and Elwakil, M. A. (1995b). Evaluation of Alternaria eichhorniae as a bioherbicide for waterhyacinth (Eichhornia crassipes) in greenhouse trials. Biological Control 5(2): 136–144.
Shabana, Y. M., Charudattan, R., and Elwakil, M. A. (1995c). Evaluation of Alternaria eichhorniae as a bioherbicide for waterhyacinth (Eichhornia crassipes) in greenhouse trials. Biological Control 5(2): 136–144.
Smith, R. J. (1983). Weed of major economic importance in rice and yield losses due to weed competition. Proceedings of the Conference on Weed Control in Rice (pp. 19–36). Los Banos: Phillipine: IRRI.
Taylor, P., Edwards, D., Musil, C. J., Wards, D. E. D., and Musil, A. C. J. (2010). Eichhornia crassipes in South Africa – A general review. Journal of the Limnological Society of Southern Africa 1(1): 37–41.
Téllez, T. R., López, E. M. de R., Granado, G. L., Pérez, E. A., López, R. M., and Guzmán, J. M. S. (2008). The water hyacinth, Eichhornia crassipes: An invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions 3(1): 42–53.
White, T., Bruns, T., Lee, S., Taylor, J., Innis, M., Gelfand, D., and Sninsky, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J. (Eds.). PCR Protocols: A Guide to Methods and Applications (pp. 315–322). New York: Academic Press.
Yirefu, F., Struik, P. C., Lantinga, E. A., and Tessema, T. (2017). Occurrence and diversity of fungal pathogens associated with water hyacinth and their potential as biocontrol agents in the Rift Valley of Ethiopia. International Journal of Pest Management 63(4): 355–363.