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Abstract

 Human teeth are vertebrate-specific structures involving many genes interacting in their 

development, which can lead to anomalies occurring in the disturbance of these genes expression. 

There is little summarized knowledge of gene related tooth development, therefore, this article 

reviewed these genes during tooth development. Tooth development stages can be classified as 

initiation, proliferation and morphogenesis, cell differentiation, hard tissue genesis, and root formation.

In the initiation stage of tooth development, there are LIM homobox genes such as Lhx6 and Lhx7 

of activated mesenchymal cells at the oral region and Dlx1-7 develop at the inter-arch within the 

brachial region. Also, in this stage, Fgf8, Barx1, and Dlx2 are expressed proximally overlying the 

presumptive molar field. BMP4 regulates the expression of MSX1 and MSX 2 which are expressed 

distally overlying the presumptive incisor filed. The Lymphoid Enhancer-binding factor (Lef1) from 

dental mesenchyme activates cell proliferation, morphogenesis, and cytodifferentiation until dental 

papilla and Sonic hedgehog (Shh) form. All of the proposed genes above cause tooth development 

in the oral cavity.
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Introduction  

 The tooth is a special organ in humans. 

The special organ of the tooth includes the 

crown and root formation. Enamel, dentin, and 

cementum are all hard tissues. All hard tissues 

of all living animals in this world must compose 

of a substance called “hydroxy apatite” (HA) (1). 

HA is a complex hexagonal crystal. Ameloblasts, 

odontoblasts, and cementoblasts can synthesize 

HA, but they are all under the control of “Genes” 

(2). 

 The fundamental processes of genes are 

to control and generate all organs. In the early

stages, genes play a role in the morphology 

and transfer of offspring. The characteristic of 

the DNA is a double helix. Deoxyribose is two 

strands in this DNA structure. The group of bases

includes Cytocine (C), Glysine (G), Adenine (A), 

and Thyamine (T) that adhere to the deoxyribose 

(3). The arrangement of those bases is the key 

to controlling genetic codes. One genetic code 

contains three bases; therefore, the possible 

genetic code of an equal 64 code (4).

 Genes or DNA transfer the duplicated 

genetic code to the messenger RNA which then 

transfers it to the cytoplasm, which is called 

transcription. Ribosome plays a role in amino 

acid synthesis, which is called translation (5). 

The polypeptides can be compared to stimulants,

which can activate the reactions in their own or

surrounding cells. The activated process is caused

by binding receptors, leading to cellular responses

(6). The cellular response contributes to cell 

migration, proliferation, and differentiation which 

can generate enamel and dentine, respectively 

(7).

Stage of tooth development

 Teeth are vertebrate-specific structures 

that, like other organs, develop through a series 

of sequential and reciprocal interactions between 

the epithelium and mesenchyme (8). Mammalian 

teeth are initiated from the oral ectoderm covering

the maxillary, frontonasal and mandibular processes

(9).

 The tooth development is caused by two

different cells including ectoderm and ectomesenchyme.

The ectoderm can differentiate into ameloblasts, 

causing enamel growth. Ectomesenchyme is a 

central core consisting of mesenchyme derived 

from lateral plate mesoderm invaded by neural

crest cells (10). The ectomesenchyme can 

differentiate into odontoblasts, and cementoblasts,

causing dentin and cementum, respectively. 

These ectodermal and ectomesenchymal cells 

have interacted with each other to induce gene 

expression for initiating the tooth development 

(11)

 The first branchial arch is populated 

by neural crest cells from the caudal part of 

the midbrain and rostral part of the hindbrain 

(12). The first branchial arch is the origin of the 

odontoblasts, dentin, pulp tissue, cementum, and 

periodontal ligaments of teeth (13). Therefore, 

tooth development is classified into 5 processes: 

initiation, proliferation and morphogenesis, cell 

differentiation, hard tissue genesis, and root 

formation (14).  

 1. Initiation 

 The initiation phase is controlled by the 

ectoderm. The odontogenic or dental epithelium 

of the ectoderm has the potential to initiate tooth 

buds (15). Disturbances in the initiation phase 

will cause missing teeth or hypodontia.
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 Moreover, several transcription factors 

(TFs), growth factors (GFs), and extracellular 

matrices (ECM) are expressed in the epithelium 

and mesenchyme of the first brachial arch in 

spatially and temporally regulated patterns (16). 

TFs bind to specific sequences on DNA and help 

to attract RNA polymerase to the start point of 

transcription. GFs promote the growth, survival,

proliferation, or differentiation of cells. ECM 

causes cell movement and cell proliferation (17).

 High levels of fibroblast growth factor 

8 (Fgf8) signaling activate the mesenchymal 

expression of the LIM homeobox genes, Lhx6 

and Lhx7, in the oral (rostral) region (18,19). Fgf8 

and endothelin (ET1) from the mandibular arch 

ectoderm activate Goosecoid (GSC) expression 

in the caudal mesenchymal region (20-22). 

 The jaw is therefore divided into a tooth-

forming Lhx-positive domain and a non-tooth-

forming Gsc-positive domain (23). Distal-less 

genes might be involved in establishing inter-

arch identity within the branchial region (24). 

There are 6 members of this family: Dlx-1, -2, 

-3, -4, -5, and -6. These genes are arranged in 

pairs, with each pair having a similar domain of 

expression including Dlx-1/2, Dlx-3/4, and Dlx-

5/6 (25). Fgf8 and Fgf9 are expressed proximally

overlying the presumptive molar field (26,27). 

Bmp4 is expressed distally overlying the 

presumptive incisor field (28). However, these 

initial domains, which are set up in the epithelium, 

remain unclear. Fgf8 induces Barx1 expression. 

As well as, Barx1 induces Dlx2 expression in the 

underlying proximal mesenchyme (29). BMP4 

positively regulates the expression of Msx1 and 

Msx2 in the underlying distal mesenchyme (30), 

and at the same time negatively regulates Barx1 

expression. Moreover, the restriction of Barx1 

and Dlx2 occurs in the presumptive molar region 

whilst the restriction of Msx1/2 occurs in the 

presumptive incisor region (31). We summarized 

in Fig 1.

Fig. 1 Pattern of gene expression in the developing tooth (modified from Rhrich, F., & amp;

Aghoutan, H. Embryological development of human molars. Human Teeth - Key Skills and 

Clinical Illustrations. 2020:1-16)
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 2. Proliferation  

 The proliferation phase is where the 

epithelium of the ectoderm divides and 

penetrates the ectomesenchyme, causing the 

enamel organ to grow. When the mesenchyme 

is divided and aggregated under the enamel 

organ, it causes dental papilla, odontogenic 

mesenchyme, and genes related to the initiation 

phase. The enamel organ and dental papilla can 

promote the proliferation together. The enamel 

organ is responsible for controlling the penetration

of the cell itself, whereas the dental papilla is 

responsible for the direction of proliferation 

(32,33).

 3. Morphogenesis   

 Tooth morphogenesis is a complex multi-

factorial process where differential mitotic activities,

apoptosis as well as cell migration, and cell 

adhesion may play an important role (34). The 

interaction of the dental papilla and enamel 

organ causes cap formation, followed by the 

differentiation of the Internal Enamel Epithelium 

(IEE) and Stratum Intermedium (SI). Cap formation

is achieved through folding along the mesiodistal 

axis of the enamel organ and is orchestrated 

by the enamel knot (35). An enamel knot is a 

transient signaling center intimately involved with 

the regulation of tooth shape or outline (36). The 

morphogenesis of the epithelium during the cap 

and bell stages involves rapid proliferation and 

folding of the cells at the site of the tips of future

tooth cusps (7,37). Thus, FGFs are the key 

regulators for the growth and folding of the 

epithelium (38). FGF signaling combined with 

areas of non-dividing epithelial cells (the enamel 

knot) surrounded by areas of strongly proliferative

epithelia may play a central role in the folding of 

dental epithelia (39). BMPs have been suggested

to play a role in the formation of periodic 

patterning by inhibiting the spreading of FGF 

signaling. FGFs and BMPs regulate the distance 

between forming cusps (40,41).

 In addition, in a wild-type mouse, Osr2 

was expressed in a lingual-to-buccal gradient 

across the jaw axis and restricted Bmp4–Msx1 

pathway activity in the lingual region (42). In 

Osr2 -/-, Bmp4–Msx1 activity is unrestricted and 

propagates mesenchymal activation for tooth 

induction in the lingual region, causing supernumerary

teeth (43). Therefore, Osr2 is an important 

determinant for patterning the mammalian dentition

into a single row across the jaw (44,45).

 4. Cell Differentiation   

 After a tooth germ’s shape is determined,

IEE and dental papilla can differentiate into 

ameloblasts and odontoblasts, respectively (46). 

An ameloblast can generate enamel, and an 

odontoblast can generate dentin-pulp complex. 

Differentiating IEE cells secrete some proteins, 

together with GFs (eg. BMP-2, TGF-b1), to 

induce the terminal differentiation of odontoblasts

(47,48). As odontoblasts differentiate, they secrete

organic matrices of dentin which is ultimately

mineralized (49). IDE cells continue their 

differentiation into ameloblasts producing an 

enamel matrix (50). Root formation is initiated 

through further apical growth of the cervical loop 

(51).

 5. Hard Tissue Genesis 

 Hard tissue genesis is the last stage of 

tooth development. This process is not correlated

with any odontogenic tissue (52). The ameloblast 

and odontoblast can play a role themselves. 
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Ameloblasts can synthesize the HA in the 

hexagonal structure, causing the enamel structure

of the teeth to form (53,54). Odontoblasts can 

generate a dentine-pulp complex (55). However, 

some genes are related to hard tissue genesis.

 The tooth buds do not undergo branching 

morphogenesis like many other organs such as 

glands and lungs but instead start to invaginate

at their tip, which leads to folding along the 

anteroposterior (mesiodistal) axis of the bud 

(31,56). The site at the tip of the tooth bud 

where the folding of epithelium starts marks the 

formation of the enamel knot (2,39).

 Moreover, the Lymphoid Enhancer-binding

factor (Lef1) from dental mesenchyme activates

cell proliferation, morphogenesis, and cytodifferentiation

until it forms dental papilla and Sonic hedgehogs

(Shh) (57,58).

 Known genes that are involved in and 

are responsible for the regulation of the “Tooth 

shape” can include Msx-1 and -2 and Alx-3 

together for an incisor (31,39,59). For molars, we 

can see many gene expressions of Dlx-1 and -2 

together with Barx-1 (60). If we knock Msx-1 or 

-2 (genes for incisor) out of the dental papilla of 

an incisor tooth and overexpress by the Barx-1

gene (a gene for molar), it will result in the 

production of a molar (9,61).

 For root development, epithelial cells of 

the IEE and OEE proliferate from the cervical 

loop of the enamel organ to form a double layer 

of cells known as Hertwig’s epithelial root sheath 

(HERS) (62). HERS extends around the dental 

pulp until it encloses all but the basal portion 

of the pulp (63). The rim of the root sheath, the 

epithelial diaphragm, encloses the apical foramen.

The root sheath of multirooted teeth is formed as 

a collar hanging from the enamel organ. HERS 

extends around each apical foramen forming

many epithelial tubes (64). Once the HERS forms, 

it rapidly initiates root dentinogenesis and then 

becomes fragmented, forming discrete clusters 

of epithelial cells known as the epithelial cell 

rests of Malassez (ERM) (65,66). As the HERS 

fragmented, ectomesenchymal cells of the dental

follicle penetrate opposing newly formed 

root dentin. Root dentin induces the follicular 

mesenchyme to form cementoblasts (67). Some 

epithelial cells of HERS might undergo an 

epithelial-mesenchymal transformation and 

subsequently secrete a cementum matrix forming

acellular cementum. During root formation, HERS 

acts as a barrier that establishes the root shape 

and may mediate cementum formation (68,69).

 Finally, the tooth germs that give rise to 

the permanent incisors, canines, and premolars 

form as a result of further proliferative activity 

within the deciduous dental lamina (70). The 

molars of the permanent dentition have no 

deciduous predecessors, so their tooth germs 

develop from the dental lamina that burrows 

posteriorly beneath the lining epithelium of the 

oral mucosa into the ectomesenchyme (11,59,71). 

We summarized genes related to the tooth 

development in figure 2.
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Fig 2. Summary of genes related to the tooth development (modified from Thesleff I. Current 

understanding of the process of Tooth Formation: Transfer from the Laboratory to the clinic. 

Australian Dental Journal. 2013;59:48–54.)  

Conclusion

 Human teeth are vertebrate-specific 

structures involving many genes interacting in 

their development, which could lead to anomalies

occurring, which may disturb these genes’ 

expression. The tooth development stages can 

be classified into initiation, proliferation and 

morphogenesis, cell differentiation, hard tissue 

genesis, and root formation. Subsequently, this 

article may provide the knowledge for further 

study and forecasting the diseases in each stage 

of tooth development. Nevertheless, the gene-

related tooth development still requires more 

research studies. 
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