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Rigorous Lower Bounds for the Ground State
Energy of Matter without the Exclusion

Principle in 2D
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ABSTRACT

The lower bound, EN > -cBN
2, for the ground state energy in two dimensions of

neutral matter of bosonic types with Coulomb interactions with fixed positive charges is
derived by considering, in process, lower bound for the kinetic energy as some power of
an integral of ρ2 where ρ is the particle density. Combining with the upper bound in two
dimensions, derived by Muthaporn C. and Manoukian E.B. (2004), which is EN < -0.0002N2,
the range of the ground state energy of bosonic matter in two dimensions, which is
-4(1 + Zmax)N

2< EN < -0.0002N2 in Rydberg unit, is possessed. Furthermore, the bound
for the ground state energy of bosonic matter EN ~ -N2 impies that, in two dimensions, the
collapse of the two systems into one is unstable as the released energy becomes overwhelming
larges for large number of particle.
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1. Introduction
There has been much interest in recent years in physics in 2D, e.g. [1, 2, 3, 4],

and the role of the spin and statistics theorem. It has thus become important to investigate the
nature of matter without the exclusion principle in 2D, çbosonic matteré. It is an important
theoretical question to investigate if the change of the dimensionality of space will change matter
from stable to unstable or explosive phase. To answer such questions, we derive a rigorous lower
bound for the ground-state energy EN of the system with N negatively charged bosons and
N motionless, i.e., fixed N positive charges, with Coulombic interactions and show that çbosonic
matteré is unstable in 2D. We do not, however, dwell upon nature for higher dimensions here,
with the exception of some comments made in the concluding section. Some of the present field
theories speculate that at early stages of our universe the dimensionality of space was not
necessarily coinciding with three, and by a process which may be referred to as compactification
of space, the present three-dimensional character of space arose upon the evolution and the
cooling down of the universe.

Although, in 2004, Muthaporn and Manoukian [5, 6] obtained an upper bound for the
ground-state energy for bosonic matter in 2D, which is EN < -0.0002N2, the knowledge of lower
bound is also important to get an actual estimate range for the ground-state energy and,
fortunately, infers its instability . The present paper deals with mathematically rigorous treatment
of such system by deriving an explicit lower bound for the ground-state energy EN without using
any trial wave function, we investigate by considering particle density satisfied ∫d2 x ρ(x) = N
and separate this paper to 5 sections. In section 2, a study of the general lower bound for
Coulomb potential is firstly carried out in 2D in order to obtain the lower bounds for Coulomb
energy. Secondly, the lower bound for the kinetic energy in 2D in term of ρ2(x) is derived in
section 3. The lower bound for the exact-ground-state energy of matter in 2D is then derived in
section 4. Finally, Section 5 deals with our conclusion. Here for completeness, we sketch
over derivation of the lower bound by considering the neutral matter composing of kinetic energy
and Coulomb potential energy in two dimensions. The Hamiltonian is

(1)

where

(2)
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with fixed positive charges, and xi, Rj refer to the position of negative and positive charges,
respectively. We note that for k = 1, the third term in the right-hand side of (1) will be absent in
the expression for H and one would be dealing with an atom. Throughout, we are interested in
the case for which k ≠ 1 relevant to matter.

2. The general bound for Coulomb potential in 2D
Consider a real function v(x) where x is a vector in 2D, with the properties that the

Fourier transform pair is

(3)

and

(4)

such that v(x) ≥ 0,v(0) < ∞ and v~ (k) ≥ 0. Let φ(xj) be a real function and

(5)

Let A1,...,Aj (j ≥ 2) be real and positive numbers. We have

(6)

and

(7)

Substituting   we obtain

(8)

Multiplying the integrand on the right-hand side of (8) by    it follows that

(9)
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Noting the Cauchy-Schwartz inequality

(10)

Applying (10) to (9), then implies that

(11)

Considering the term  on the right-hand side of (11), v(x) can be

replace by v(xi-xj) and  can be replace by  we obtain

(12)

where, recalling that A1,...,Ak (k ≥ 2) are real and positive numbers and v~ (k) ≥ 0,

(13)

Substituting (13) to the right-hand side of (11), we obtain

(14)

Hence (14) can be arranged as

(15)
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Considering (c - d)2 ≥ 0, for any real number c,d such that d > 0, we have

(16)

Setting

(17)

and

(18)

then noting the inequality in (16), we infer that

(19)

Considering the left-hand side of inequality (19), we obtain

(20)

Substituting (20) into (19), we obtain

(21)

Let V(x) be a real function such that V(x) ≥ v(x) and ρ(xj) be also a real function and
so far arbitrary then we introduce

(22)

Substituting (22) into (21), and replacing x′ by xj, we obtain

(23)

Since ρ(x) and V (x-x′) are real function, i.e., ρ(x) = ρ*(x) and V(x - x′) =  V*(x - x′),
the Fourier transform of (22) is expressed as
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(24)

Since  (24) can be written as

(25)

Applying an integral representation of the delta function in 2D to (25), we obtain

(26)

In the same way, φ∼  ∗(k) can be written as

(27)

Since φ∼  (k)2  = φ∼  ∗(k)φ∼  (k), noting (26) and (27), we obtain

(28)

Hence, by using (28), we have

(29)

Since V(y) ≥ v(y),V(y-y′) in the right-hand side of (24) can be replaced by v(y-y′).
In analogy to V(x) which V(y) ≥ v(y), we may introduce

(30)

Dividing (30) by v~ (k) on both sides, we obtain

(31)

Multiply (31) by φ∼  (k), also noting (24), it follows that
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(32)

Dividing (32) by (2π)2 then integrating with respects to  we have

(33)

We rewrite (33) as

(34)

Hence, from (33) and (34), we get

(35)

Substituting (29) and (35) into (23), we then have

(36)

Since V(x) ≥ v(x) ≥ 0, hence  Then substituting (35) into

(36), we obtain

(37)

where, needless to say.  V ~(k) is real. Let  with λ > 0.

The Fourier transform of v(x) is
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(38)

We now introduce the Yukawa potential.

(39)

and evaluate the Fourier transform. Letting λ → 0 we recover the Coulomb potential from (39).

It was, in fact, in response to the short range of nuclear forces that Yukawa introduced λ. For

electromagnetism where the range is infinite, λ becomes zero and thenfore Vλ(x) reduces to the

Coulomb potential i.e.  Thus, on noting (39), the Fourier transform of the Coulomb

potential in 2D is

(40)

For v(0), where  we define v(0) by using Taylor series, as

(41)

Substituting (38), (40) and (41) into (37), we obtain the general Coulomb potential bound (k ≥ 2) as

(42)

Noting Minkowski inequality, we have  Then, applying to the forth term of

the right-hand side of (42), it follows that

(43)

From (42) and (43), in order to obtain the  general Coulomb potential in 2D, we can
consider only the case that λ = λ0 which
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(44)

In the Hamiltonian, it is then straightforward to apply (44) twice, once to the repulsive
potentials, the second term in the right-hand side of (1). Let Ai, Aj = 1 and k → N, we obtain

(45)

and again, to the repulsive potentials, the third term in the right-hand side of (1). Let Ai = Zi, Aj
= Zj and xj → Rj for k ≥ 2, we also obtain

(46)

We substitute   Zi = N where k ≥ 2,  (1) = N, (45) and (46) into (1), the ground state

energy, 〈ψΗψ〉 with k ≥ 2, is expressed as

   (47)

Where

(48)
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3. The lower bound for the kinetic energy in  2D
For the case of bosonic (of spin 0 for simplicity), in multi-particle systems, for

example, the particle density is written as

(49)

where ψ is an N -boson symmetric normalized wavefunction.
Noting (47) and (49), for k = 1, we obtain the ground-state energy of N identical

bosons as

(50)

And, on noting (47) to (49), for k ≥ 2, we obtain the ground-state energy of N identical bosons as

(51)

Optimizing (51) over λ0 gives

(52)

Substituting (52) into (51) gives the remarkably simple bound, for k ≥ 2, as

(53)

This suggests to use a lower bound for T which is some power of an integral of ρ2(x).

To the above end, we may apply the Schwinger inequality [7] for the number of

eigenvalues (counting degeneracy) ≤-ξ, ξ>0, (if any) of a Hamiltonian , to (53) for

k ≥ 2 in 2 dimensions to obtain the following inequality
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(54)

where f(x) ≥ 0. Recently, an exact functional expression for N-ξ (H0 - f(x)) derived by Manoukian
and Limboonsong [8] is not an upper bound as in (54).

For   and any δ > 0 we may choose ξ in (54) such that

(55)

so that   which implies that N-ξ   = 0, The right-hand side of

(55) provides a lower bound to the spectrum of  since its spectrum would then

be emply for energies ≤-ξ. Therefore, (55) gives the following lower bound for the ground-state

energy of the Hamiltonian which is

(56)

To obtain the lower bound of T in one particle systems, we first consider one particle

which ∫ d2x ρ(x) = 1 and define positive function   where γ,α > 0 and f(x)

is not the potential energy for any Hamiltonian. This is introduced in order to be able to obtain
a lower bound for T. Accordingly, with γ = 2 and α = 1, we obtain the positive function f(x) in
term of ρ2(x) as

(57)

For N identical bosons, by using (49) and (57) for each ith particle, where  
we obtain
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(58)

Now, in order to obtain a lower bound to the lower of the spectrum of the çHamiltoniané
in (58), we can put N bosons in the same state without Pauliûs exclusion principle (put all of the

N bosons at the bottom of the spectrum of ). Hence the Hamiltonian (58) is

bounded below by N times the ground-state energy in (56). We have for N identical bosons,

(59)

Substituting (55) into (59) then compare with (58), we finally have the expectation value of the
kinetic energy T, for N identical bosons, as

(60)

for any δ > 0.

4. Lower bound for the ground state energy of bosonic matter in 2D
Substituting (60) into (53), the lower bound for the ground state energy of bosonic

matter in 2D is expressed as

(61)

Upon setting  (61) becomes, for (k  2)
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(62)

where δ has taken arbitrarily small, 
Finally, using the bound

(63)

where Zmax corresponds to the nucleus with largest charge in units of e.
Substituting (63) into (62), we obtain the lower bound for the ground state energy of

bosonic matter in 2D as

(64)

5. Conclusion
The lower bound for the ground state energy of bosonic matter depends on the

particle number square, N2. It is interesting to note that even if Z1 = ... = ZN = 1 in (64),
the coefficient of N2 is of the order 8. For 1 ≤ Zi ≤ Zmax the maximum coefficient of N2 is
4(1+Zmax). When we combine the result in (64) with the upper bound, deriving by Muthaporn,
C. and Manoukian, E. B. [6], we get the range of the ground state energy of bosonic matter of

N particles as -4(1+Zmax) N
2 < EN < -0.0002 N2 in unit of 

For further discussion on bosonic matter (matter without the exclusion principle)
behavior in two dimensions, we obtain an N2 behavior which is to be compared to the N5/3 one
in three dimensions [9-14], which is implying evenmore violent collapse of such system in two
dimensions. The ground-state energy EN in two dimensions forms -EN -Nα with α  > 1 as same
as [9, 10, 11, 15] in three dimensions. Also such a power law behavior, α > 1, in which, for two
dimensions, α = 2 implies instability as the formation of a single system consisting of (N + N)
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particles favored over two separate systems brought together each consisting of N particles,
and the energy released upon the collapse of the two systems into one, being proportional to
[(2N)2 - 2(N)2], will be overwhelmingly large for realistic large N, e.g., N ~1023. Regarding to
such a collapse Dyson states [9, 10]: ç[Bosonic] matter in bulk would collapse into a condensed
high-density phase. The assembly of any two macroscopic objects would release energy
comparable to that of an atomic bomb. Matter without the exclusion principle, bosonic matter,
is unstable in two dimensionsé.
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