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Decoherence of the Density Matrix in the Large
Time Limit
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ABSTRACT

We present that decoherence is caused by only the weak measurement,
although there is no environment interactions. After we reduce the density matrix for
the composite system by using the partial trace, coherence is destroyed for large time
limit. This result is as same as the environment-induced decoherence. We analyze
decay and define the decoherence time scale for decaying of the off-diagonal elements.
This decoherence time scale obeys the uncertainty relation for time and energy. For an

example, we solve the Stern-Gerlach experiment for investigating the spin state.
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Introduction

Quantum theory works successfully in practical application, some of its
concepts seem debate when related to the world of our experience. For an example,the
superposition principle plays the most central role in all considerations of standard
quantum theory, and even the paradoxes of quantum mechanics. When the linear
superposition of some basis states is obtained in a given measurement the wave
function collapses to one of the basis state contained in the wave function. Though it
can be express in the probable outcome, this process can not be discussed in
mechanism for the collapse. In 1928 Bohr [1] postulated that the wave function collapse
occurs when the quantum system comes into contact with an apparatus which must be
described classically. In 1932 von Neumann [2] considered an irreversible reduction
process taking the quantum superposition into a statistical mixture which is classically
meaningful and interpretable. According to Bohm [3], this implies that the classical
properties as we observe the more contained only as potentialities in the state vector.
An interesting line of investigation to solve the problem of measurement is to treat on a
Stern-Gerlach experiment, i.e. a measurement of spin-; particle in the presence of an
inhomogeneous magnetic field interacting with the environment. In 1985 Venugopalan,
Kumar and Ghosh [4] proposed that decoherence is caused by the interaction in which
the environment in effect monitors certain observable of the system, destroying
coherence between the pointer states corresponding to their eigenvalues. Most studies of
decoherence [5-9] in the literature deal with an environment modelled by a collection
of oscillators, and the dynamics of the reduced density matrix of the system of interest
is then studied via the corresponding master equation. Following the FV approach [10],
the system and its environment have factorizable initial condition, i.e. decoupled at time
t =0. Hakim and Ambegaokar [11] generalized this choice, but their method is
applicable only to systems for which the total Hamiltonian has translational invariance.

The paper is organized as follows. In the next section, two processes of
evolution is given. In the third section, we show that a system-apparatus interaction in
the weak measurement causes decoherence of the reduced density matrix at long time.
In the fourth section, we consider the Stern-Gerlach experiment without the environment. The
off-diagonal elements of the reduced density matrix decay to zero at large times.

Finally in the last section, we summarize the results.
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The Measuring Process
We consider the dynamics of quantum states in two processes.
(i) By following the postulates of quantum theory, states of quantum systems

evolve according to the deterministic Schrodinger equation

0
ih o [0) = H|W), (1)

where H is a Hamiltonian of the closed system. The density matrix A0 changes with time

by the formula

po — pr = U(t, to)poU’ (¢, 1), (2)

where (/(t,t,) and po are respectively the time-evolution operator and initial density
matrix of the quantum system. If the Hamiltonian operator is independent of time, then

the time-evolution operator is given by
0
U(t, to) = exp {—hH(t - to)] : (3)

In this sense we can compute the state or the density matrix at an arbitrary time and the
measurable properties of the system can be predicted probabilistically.

(ii) The collapse of the state in a quantum measurement is a process which
destroys the linear superposition of the basis states. The defnitive outcome can only be
accounted by following the von Neumann’s postulate [2]. After the measurement, the
wave function is one of the basis states contained in the wave function. By the notion
of the collapse of the wave function, if the initial state of the quantum system is
|W) and the measurement gives the result a,, (an observable A is a Hermitain operator
with A |a,,) = @, |a,)) then the state of the quantum system is changed to be the state
P, | V) with the probability

p(m) = (U] PP, V), (4)

where P, = |a,,) (am] is the projector (the index m refers to the measurement outcome
that may occur in the experiment). After the measurement, the density matrix

Po is changed as
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po— p=_PhpoP. (5)

For an example, we consider the two-level system. By following the process (i), the

density matrix evolves, according to eq.(2), to

sinf]®>  sinfcos*f

Pt = U(t,to) UT(t>t0)7 (6)

sin*fcosf  |cosh|?

where the initial state of the two-level system is |S) =sinf| 1) + cosf| |) and

po = |S)(S|. The Hamiltonian operator for the two-level system is H = %ﬁwcso that

the time-evolution operator U (t, to = 0) can be written as
U(t,0) = e 3%, (7)

where hw is the energy difference between the upper state| T)and lower state| |)and

o is the 2 x 2 (Pauli-spin) matrix notation

1 0
UZ[O—l]' ®)

Here o| 1) = | 1) and 0| |) = —| |). By using eqs.(7) and (8), we can rewrite eq. (6) as
|sin 0] e~ “!sin 6 cos* 0
Pt = . (9)

wtsin® 0 cos 0 |cos 6|

Following the process (ii), the density matrix is changed by measurements in the form
of eq.(5). Since the projection operators corresponding to the upper level (Py) and

the lower level (P l) are
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the density matrix is

|sin 0| 0

11
0 |cos 0 (1)

Notice that the arbitrary changes of the density matrix due to measurements given by
eq-(5) leading to eq.(11) is different with the time-evolution of the density matrix

given by eq.(9), i.e. p 7# p¢ or

|sin 0] 0 Isin 0] e~ “tsin f cos* 0

0 |cos 6] e™“!sin* 6 cos 0 |cos 0]

Decoherence for Large Time Limit

We investigate the special process (i) which gives the result as same as the
process (ii). By starting with the theory of measurement, we cannot observe the
quantum system by itself, but must rather investigate the quantum system S interacting
with the apparatus A. Let us consider the composite system, the quantum system and

the apparatus. The total Hamiltonian of this composite system is written as

H;iop = Hs+Ha+Hj, (13)

where Hg represents the Hamiltonian of the quantum system, H, that of the apparatus
particle, Hy that of the coupling interaction which is assumed to be the weak

measurement

H; = g(t)xA, (14)

where ¢(t) = ¢ a coupling constant for ¢ > 0 and 0 otherwise, X is the position operator
of the apparatus (x|z) = z|z)) and A is some operators representing the measurement

acting on the quantum system described by the eigenvalue equation

Alay,) = aplan). (15)

Here, we assume the non-degeneracy case.
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The density matrix at time t depends on the initial density matrix at time
t = 0. If we assume that the quantum system and the apparatus are decoupled at ¢ < (
(factorizable initial condition) and the initial wave function of the apparatus is a
Gaussian wave packet while the initial state of the quantum system is an arbitrary state
|quantum state), then the initial state of the composite system projecting on the position
state | 7o) of the apparatus is

1 % i
e 22 AP0 ) Jquantum state) (16)
vam )

(f(e = 0) = (

and the initial density matrix is

Po = Pao X Pso, (17)

where pPso and pPao are the initial density operator for the quantum and apparatus
system respectively. For simplicity, we assume that the apparatus Hamiltonian Hp is a
free particle

P2

Ha = ma <18)

where M is a mass of the apparatus particle. The time-evolution operator is now

. P2
U(t,to =0) = exp {—;(HS ton T gXA)t} (19)

and the initial density matrix evolves in time by following the process (i) as

po — pr = U(t, o) poU" (¢, 10). (20)

For the limitation on the measurement [12], Araki and Yanase [13] proved
that an exact measurement of an operator which does not commute with a conserved
quantity is impossible. So we consider by following this limitation that the observed
operator satisfies a conservation law. It implies that the symmetry conservation
principles hold, [Hg, A]=0 (for the momentum operator [Hg, P] = 0 i.e. homogeneity

of space, for the total angular momentum [Hg, L] = 0 i.e. isotropy of space). By using

the Baker-Hausdorf formula ¢(A+B) = ¢AcBe—3[ABl for [[A B],A] = [[A,B],B] =0,

eqg. (20) can be written as
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. i P2 i P2 i
p = e st {6—;(W+ng)tpO€;(2M+ng)t entist, (21)

We insert the completeness relation [ = [ dz|x)(x| on the left and right hand of po.
We obtain

po=e ¥t [ g [ aat [ dwo [ dutla”) K (0", it A)psolahlpaolro) K (o' st A) (2|11,
(22)

.52
where K (2" z):t|A) = (2|e~#Gmt9A%)t 27y We now see that there is the propagator K
for the motion of a particle in a linear potential gAx,, depending on the observed operator
A. This propagator has been recently discussed by several authors [14-17] using
different techniques. The formula is

i (P2

K" apt|A) = (a']e"#Ermomotiz))
1
2

M iMoo, e | 9AL ’ 92A2t3
_ LM gAl - 23
(2m’ht> eXp{h [Zt (@ = o)+ @ 3] = |y (29

and

i 2
K(&, 20 t|A) = (af|e R GErroAl |z,
2

- M \2 i[M, ,  gAt, g A%
N <2m'ht> eXp{h{zt(”” T

For the analysis of subsystem of the composite quantum system, we consider

the partial trace over the apparatus system. The partial trace is defined by

pr = Troplp] = / dz (| pe| ). (25)

By inserting eq.(16), eq.(23) and eq.(24) into eq.(22) and using eq.(25), it is obvious

that the reduced density operator for the quantum system is
per = e~ #HS! / AW (2, | A) pso W' (2, | A)erHst, (26)

where, for convenient, we define the wave function for the apparatus system at time ¢
which contains the interaction between the quantum system and the apparatus in the

form of the linear potential propagator
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1 o i /
W 1lA) = [ depK(x. 1) { m} | )

The integral eq.(27) can be evaluated by completing the square in the exponent. One

simply obtains

o? (B — = + g 9AL° Ma? 27243
(z,t|A) = ,/ e exp | Ma? (3 = )/ - +gAxt 42
a? 4 h 2t a? 4 21 24M

(28)

So the position distribution is

> 1] e? 1 ot N

a?M?

For the different eigenvalue, the pointer wave packet would spread in time in the
position space. We have the separable distance between their peaks which point the

eigenvalues a,, and a,,.; as,

1
A, = WQAAtZ; Ap = |am — Amy1]- (30)

This is a separate distance between the pointer corresponding with the observed results
@m and Gmy1. The wave function and the position distribution are functions of the observed
operator A, acting on the initial density matrix of the quantum system. By inserting the
identity I = Y |a,,) (a;,|in the left and right of Pso in eq.(26) and using the
Gaussian integrﬁs,

/dx\I/(m,t]an)‘l'T(:U,ﬂam)

! o . ‘ i 92t3 2 2
R lﬁm /dx o [_h (92t) (an —am) = (24]\/[ (a7 — a)

2
i <M0¢2> (%ft T+ 2Mgant2) (p]&t T+ 2Mgamt2>
X exp | ——

2 | iht o o _ it
h 2t af + 47 « i

— exp [_ (ﬁ)Q (an — am)Q] exp {—; (;’j;) (a2 - a;)} , (31)
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the reduced density matrix for the quantum system is

i (87 (a2 a2 :
pa = ATl o anlpatan) ()G ) b, )

n m

where G,,,,(t) is defined as

G () = exp [— (4;1)2 (ay — am)Q] . (33)

For large time limit, the function G,,,(t) decay to zero for the off-diagonal
elements thus the decoherence corresponding to the decay of the element correlated
with the off-diagonals in the reduced density matrix (Since [Hg, A] =0, Gy, = 0 Vm #n
implies that (an|pstla,) = 0 Vm # n ie. py is the diagonal matrix). We define the
decoherence time scale which the reduced density operator have decayed to 1/e of their

original values for the off-diagonal elements as

4h

Td — —
ST7AN

(34)

where  Aann, = |a, — an| is the differential eigenvalue of operator A. This definition

obeys the uncertainty relation for time and energy

AEAt > h, (35)

where the energy uncertainty of the total energy AF is equal to the uncertainty of the
perturbation energy Hj; = grA. Here, AA corresponds to Aa,, and the uncertainty

in time A¢ corresponds to the decoherence time scale Ta.

After t > 7,4 , the density matrix pg becomes

po = e iHst {Z<%|P$Q!%>Pn] e Hst (36)

n

where P, = |a,) (a,| is the projection operator comesponding to the state |a).
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Now we obtain decoherence of the density matrix by discussing the time
evolution of the initial density matrix of the composite system. By eliminating the
degree of freedom of the apparatus using the partial trace, the weak measurement
interaction leads to decoherence in the reduced density matrix. We can see in eq.(33)
that the reduced density matrix pst becomes the diagonal one for the large time
limit. This result is the same as environment-induced decoherence (see, for example, in
[9]). Without an environment, coherence can also be destroyed by the coupling
interaction in the form of weak measurement between the observed system and the

apparatus.

The Stern-Gerlach Experiment

In this section, we consider the Stern-Gerlach experiment for the measurement
on a quantum system (spin—% system) with a macroscopic quantum apparatus
(the particle trajectory). We start with the pure density matrix of the system-apparatus
which have the coupling interaction in the form of weak measurement. When the pure
density matrix is reduced and the large time limit is considered the of-diagonal
elements decay to zero.

A general Hamiltonian for the Stern-Gerlach experiment, that applies to spinl
but can be straightforwardly extended to any spin, is

P2
Hipte = Ha+Hg+Has = — + Ao, +ex0, (37)

2m
where x and P are position and momentum operators of the apparatus particle. The
operator 0 is to measure the 2 component of spin which has the eigenvalues 1=:0, and
-1=:0, with the corresponding eigenstates |0, 1) and |o,,2) respectively (in the previous
notation, |g,,1) =| 1) and |0.,2) = | |)).
If the initial condition for this system is a product of a Gaussian wave packet

and a general spin state i.e.

(2| Wo) = i 57 | |S), (38)

yavm

then the initial density matrix can be written as
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1 @ 22 1 i /a2
(alpola’) = etm 3z | 18)(8] | e iR ). (39)
’ a/T \a/m

Here, a spin state |S) = sinf|o,, 1) 4+ cosf|o,2) . The time evolution of this density

matrix according to process (i) in the second section is

Pt = U(tvtO)pOUT(tvtO)a (40)

where the unitary evolution operator is

i 2
Ult,tg = 0) = e~ i GmHAo=texoa)t, (41)

By using the Baker-Hausdorf formula e(A+B) = ¢A¢Be3lABl for [[A, B], A] = [[A, B],B] =0,

the unitary evolution operator can be rewritten as

U(t,to) — 67%()\0z)tef%(%+exoz)t (42)

and
Ut(t, 1) = et Fatexoligi 0ot (13)

for [P2 )\JZ} =0 and [A\o,,ex0,] = 0.

2m>

We now, as in the previous section, consider the effective system by using the
partial trace over the apparatus system. Form eqs.(32) and (33), the reduced density

operator for the spin system in this Stern-Gerlach experiment is

2 2, ,1<ﬁ>(02702) .
Pst = Z Ze_ﬁ(/\ai)t |Uza Z> <O—Z7j’ <027 i’PSO‘UzJ.) |:6 A Y Gl](t):| e?(/\aj)t7 (44)
i=1j=1
where pPso = |5><S| and
aet\?
Gij<t) = exp |:— <E> (O'i — O'j)2:| . (45)

In the large time limit, the function G;;(t)tends to

1 : =3
o (46)
0 ; otherwise
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and the off-diagonal elements decay to zero thus the reduced density matrix becomes

2
Pst = Z ’Uz; i> <Uza i‘ <0'zvi‘ Pso ’027i> (47)
i=1
or 2
Pst = ZPz <Uza Z| PSso |Uz7 Z> (48)
=1

where P; = |o,,14) (0., 1| is the projection operator corresponding to the state |0, 4),7 = 1, 2.

In the matrix representation, eq.(48) can be written as

| sin 4 0
L= , 49
Pt { 0 | cos 62 (49)

Note that this result is the same as eq.(11) caused by measurements (eq.(5) of process (ii)).

Conclusion

We have show that decoherence can appear when without existing
environment by using the coupling interaction between a quantum system and an
apparatus in form of the weak measurement. We start with the composite system
containing the observed system and the apparatus system. Following the limitation on
the measurement and the Baker-Hausdorf formula, the time-evolution operator can be
separable in the form of Eq.(21). Writing the time-evolution operator as the form of
eq.(21) yields a propagator of the apparatus system modifies by the linear potential
grA. After we reduce the density matrix of the composite system by eliminating
the degree of freedom of the apparatus system, coherence is destroyed in the large time
limit. The off-diagonal elements decay at the rate 7; ' ~ 4i/agAd,,. The decoherence
time scale in the form eq.(34) is a duration which the off-diagonal of the density matrix
have decayed to 1/e of their original values. It satisfies the uncertainty relation
for time and energy. For example, we consider the Stern-Gerlach experiment for investigating
the measurement of spin in the non-effect of environment. Following our modal the off-

diagonal elements of the spin density matrix decay to zero for large time limit.
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