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บทคัดย่อ 

	 งานวิจัยนี้ได้ศึกษา ความอลวนที่เกิดขึ้นในเวลาเดียวกันระหว่างระบบอลวนที่ต่างกันโดยใช้
ตัวควบคุมแบบแอคทีฟ ขั้นตอนวิธีนี้ได้ถูกประยุกต์ใช้กับความอลวนที่เกิดขึ้นในเวลาเดียวกันของ
ระบบพลศาสตร์แบบ Lü และ Chen ประสิทธิภาพของตัวควบคุมได้ถูกแสดงผลแบบเชิงตัวเลข
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Chaos Synchronization Between Two Different 
Hyperchaotic Systems Using Active Control


Thongchai Botmart*


ABSTRACT

	 This paper presents chaos synchronization between two different hyperchaotic 
systems by using active control. This technique is applied to achieve chaos 
synchronization of the dynamical systems Lü and Chen. The performances of the

control schemes are verified by numerical simulations.
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Introduction

	 Since Pecora and Carrol introduced a method [1] to synchronization two 
identical systems with different initial conditions, chaos and hyperchaotic 
synchronization , as a very important topic in the nonlinear science, has been developed 
extensively in the last few years. A wide variety of approaches has been proposed for 
the synchronization of hyperchaotic systems which include linear and nonlinear feedback 
control [2-4], active control [5]. Most of the method mentioned above synchronization is  
two identical hyperchaotic systems. However, the method of the synchronization of two 
different hyperchaotic systems is far from being straight forward. Hyperchaotic consists 
of different structures and parameters mismatch of the two hyperchaotic systems. It is 
well known that, to generate hyperchaos from the dissipatively autonomously 
polynomial systems, the state equation must satisfy the following two basic conditions. 
Firstly, the dimension of the state equation is at least 4 and the order of the state 
equation is at least 2. Secondly, the systems has at least two positive Lyapunov 
exponents satisfying that the sum of all Lyapunov exponents is less than zero.

	 In this paper, we apply active control theory to synchronize two different 
hyperchaotic systems. We demonstrate active control technique by Lü and Chen       
systems.




Preliminary

Definition 1

	 We consider the system described by


		  x.   = f(t, x)							              (1)


where x ∈ Rn,  x.  =                              and is a vector having components fi (x1,x2,...,xn),


i = 1, 2, ..., n.


	 We shall assume that the fi are continuous and satisfy standard conditions,  
such as having continuous first partial derivatives so that the solution of (1) exists and 
is unique for given initial conditions. If fi do not depend explicitly on t, (1) is called 
autonomous. If  f(c, t) = 0 for all t, where c is some constant vector, then it follows at 
once from (1) that if  x(t0) = c then x(t) = c for all t ≥ t0. Thus solutions starting at c    
remain there, and c is said to be an equilibrium or critical point.


[dx1, dx2, ... , dxn]
  dt    dt         dt
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	 An equilibrium state  x = 0 is said to be 	


	 1.	 Stable if for any positive scalar ε there exists a positive scalar δ such that  
|| x(t0)||e< δ implies || x(t)||e<ε, t ≥ t0, ||.||e is a standard Eucledian norm. 


	 2.	 Asymptotically stable if it stable and if in addition x(t)→ 0 as t → ∞.


	 3.	 Unstable if it is not stable; that is, there exists an ε>0 such that for every   
δ>0 there exist an x(t0) with || x(t0)||e< δ  so that || x(t1)||e≥ ε for some      
t1> t0. If this holds for every x(t0) in || x(t0)||e< δ the equilibrium is         
completely unstable.


Definition 2 Algebraic criteria for linear systems 

	 Before studying nonlinear systems we return to the general continuous time 
linear system. 

		  x.  = Ax							       (2)

	 where A is constant  n x n matrix, and (2) may represent the closed or opened 
loop system. Provided det A ≠ 0, the only equilibrium point of (2) is the origin, so it 
is meaningful to refer to the stability of the system (2). The two basic results on which 
the development of linear system stability theory relies are now given. 


Theorem 1. The system (2) is asymptotically stable if and only if A is a stability 
matrix, i.e. all the characteristic roots λk of  A have negative real parts; (2) is unstab
le if for some characteristic roots λk, Re(λk)>0; and completely unstable if for all

characteristic roots λk, Re(λk)>0


	 To begin with, the definition of hyperchaotic synchronization used in this 
paper is given below.


Definition 3 [8]. For two nonlinear hyperchaotic systems

	 x.  = f(t, x)							       (3)

	 y.  = g(t, y) + u(t, x, y)					     (4)


	 where x, y ∈ Rn, f, g ∈ Cr [R+ × Rn, Rn], u ∈ Cr [R+× Rn × Rn, Rn], r ≥ 1

assume that (3) is the drive system, and (4) is the response system, u (t, x, y) is the 
control vector. Response system and drive system are said to be synchronic if for ∀x(t0),        
y(t0) ∈ Rn, lim 

t→∞ ||x(t) - y(t)|| = 0.


Hyperchaotic synchronization between hyperchaotic Chen and hyperchaotic Lü


	 The hyperchaotic Chen system [7] , is given by 
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	 x.  = a(y-x) + w

	 y.  = dx - xz + cy							        (5) 

	 z.  = xy - bz	

	 w.  = yz + rw


	 where (a, b, c, d, r) ∈ R. When a = 35, b = 3, c = 12, d = 7, 0.085 < r ≤ 0.798,

system (5) is hyperchaotic.

	

	 The hyperchaotic Lü system [6], is given by 

	 x.  = a1 (y-x)	

	 y.  = -xy + c1y + w							       (6)

	 z.  = xy - b1z	 


	 w.  = z-d1w	

	 where (a1, b1, c1, d1) ∈ R. When a1 = 15, b1 = 5, c1 = 10, d1 = 1,  system (6) is 
hyperchaotic. 



	 In particular, these projections of chaotic attractor of hyperchaotic Chen system 
(5) with  a = 35, b = 3, c = 12, d = 7, r = 0.5 are displayed in Fig. 1 and hyperchaotic Lü 


systems (6) with  a1 = 15, b1 = 5, c1 = 10, d1 = 1 are displayed Fig. 2.
































Figure 1 Hyperchaotic Chen chaotic attractor. 
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Figure 2 Hyperchaotic Lü chaotic attractor.




	 Our aim is to make hyperchaotic synchronization between hyperchaotic Chen 
system and hyperchaotic Lü system by using active control. We assume that

hyperchaotic Chen system is the drive system and hyperchaotic Lü system is the    
response system. Therefore, the drive system is defined as follows 

	 x. 1 = a(y1 - x1) + w1		
 
	 y. 1 = dx1 - x1z1 + cy1						       (7)

	 z. 1 = x1y1 - bz1


	 w. 1 = y1z1 + rw1	


	 and the response system is given by 

	 x. 2 = a1(y2 - x2) + u1(t)

	 y. 2 = x2z2 + c1y2 + w2 + u2(t)	 				     (8)

	 z. 2 = x2y2 - b1z2 + u3(t)

	 w. 2 = z2 - d1w2 + u4(t).



	 We have introduced four control functions  u1(t), u2(t), u3(t) and u4(t) in 
(8). Our goal is to determine the control functions  u1(t), u2(t), u3(t) and u4(t).          
In order to estimate the control functions, we subtract (7) from (8). We define the error 
system as the difference between system (7) and the controlled system (8). Let us 
define the state error between the response system (8) that is to be controlled and the 
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controlling system (7) as 

	 e1	 =	x2 - x1, e2 = y2 - y1, e3 = z2 - z1, e4 = w2 -w1.	 	 (9)


	 Subtracting (7) from (8) and using the notation in (9) yields

	 e. 1	 = 	-w1 + a1(e2-e1) + (a1-a)(y1-x1) + u1(t)

	 e. 2	 =	 -e1e3 - x1e3 - z1e1 + c1e2 + (c1-c)y1 - dx1 + w2 + u2(t)	(10)

	 e. 3 	 = 	e1e2 + y1e1 + x1e2 - re3 - (b-b1)z1 + u3(t)

	 e. 4 	 = 	z2(1-y1) + y1e3 - d1e4 - (d1+r)w1 + u4(t).


	 We define the active control functions  u1(t), u2(t), u3(t) and u4(t) as follows

	 u1(t)	 = v1(t) - (a1-a)(y1-x1) + w1


	 u2(t) = v2(t) + e1e3 + x1e3 + z1e1 - (c1-c)y1 - w2 + dx1		  (11)

	 u3(t) = v3(t) - e1e2 - y1e1 - x1e2 + (b-b1)z1


	 u4(t) = v4(t) - z2(1-y1) - y1e3 + (d1+r)w1	 .	


	 Hence the error system (10) 

	 e. 1 = a1(e2-e1) + v1(t)

	 e. 2 = c1e2 + v2(t)

	 e. 3 = -b1e3 + v3(t)

	 e. 4 = d1e4 + v3(t).							       (12)


	 The error system (12) to be controlled is a linear system with a control input 
v1(t), v2(t), v3(t) and v4(t) as function of the error state e1, e2, e3, and e4. As long as these 
feedback the system e1, e2, e3 and e4 converges to zero as time t tends to infinity. This 
implies that hyperchaotic Chen and hyperchaotic Lü system are synchronized with

feedback control. These are many possible choices for the control v1(t), v2(t), v3(t) 
and v4(t). We choose 


	 V1(t)     

=   A

 	 e1  

,
	 V2(t)		  e2


	 V3(t)	  	 e3


	 V4(t)		  e4


		
 
	 where A is a 4 × 4 constant matrix. In order to make the closed loop system

stable, the proper choice of the elements of the matrix A is such that feedback system 
must have all eigenvalues with negative real parts. The matrix A is chosen in the 
following form.
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A	 =

	 -1+a1	 -a	 0	 0   

			   0	 -(1+c1)	 0	 0

			   0	 0	 -1+b1	 0

			   0	 0	 0	 -1+d1


	 In this particular choice, the closed loop system (12) has the eigenvalues -1, -1, 
-1 and -1. This choice will lead to the error states e1, e2, e3 and e4 converge to zero as 
time tends to infinity and hence the synchronization between hyperchaotic Chen and 
hyperchaotic Lü is achieved.


Numerical simulations

	 Fourth-order Runge-Kutta integration method is used to solve two systems of 
differential equations (7) and (8) with time step size 0.001. We select the parameters of 
hyperchaotic Chen system as  a = 35, b = 3, c = 12, d = 7, r = 0.5 and the parameters of 
hyperchaotic Lü system as a1 = 15, b1 = 5, c1 = 10 and d1 = 1, so that each of    

hyperchaotic Chen system and hyperchaotic Lü system exhibits a chaotic behavior.           
The initial values of the drive system are x1(0) = 0.5, y1(0) = 1, z1(0) = 1.5, w1(0) = 2.5 
and the initial values of the response system are x2(0) = 10, y2(0) = -5, z2(0) = 5, 
w2(0) = -10. Then the initial values of the error system are e1(0) = 9.5, e2(0) = -6, 
e3(0) = 3.5, e4(0) = 7.5.


Figure 3 	The state x1 of hyperchaotic Chen system and hyperchaotic Lü system

	 without active control.




.
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	 The results of the simulation of hyperchaotic Chen system and hyperchaotic   
Lü system without active control are shown in Fig. 3 (displays x1 and x2) and            
Fig. 4 (displays e1, e2, e3, and e4) . Fig. 5 shows that the synchronization is occurred 
after applying active control. Fig. 6 shows the state errors of hyperchaotic Chen system 
and hyperchaotic Lü system of equations with the active control activated. 



























Figure 4	 The state errors (e1, e2, e3, e4) of hyperchaotic Chen system and 

hyperchaotic Lü system of equations without the active control.



























Figure 5 	The state x1 of hyperchaotic Chen system and x2 hyperchaotic Lü system with

	 active control activated.
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Figure 6	 The state errors e1, e2, e3, e4 of hyperchaotic Chen system and hyperchaotic              

Lü system of equations with the active control activated. 


Conclusion

	 This work demonstrates the chaos synchronization between two different 
hyperchaotic systems using active control achieved. The hyperchaotic Lü system is controlled

to be hyperchaotic Chen system. We can use active control theory to synchronize two identical 
or different hyperchaotic systems. 
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