องค์ประกอบทางเคมีของลำต้นตากวาง

อารี แจ้งเรื่อง พิชิต สุดตา พินิติ รตะนานุกูล และ สุนิตย์ สุขสำราญ*

บทคัดย่อ

การศึกษาองค์ประกอบทางเคมีของสารสกัดชั้นเอทิลอะซีเตตของลำต้นตากวาง (Salacia verrucosa Wight) สามารถแยกสารประกอบไตรเทอร์พื้นประเภท friedelane 3 ชนิด คือ friedelin (1) friedelane-1,3-dione (2) 26-hydroxyfriedelane-1,3-dione (3) รวมทั้งน้ำตาล dulcitol (4) การพิสูจน์ ้โครงสร้างและสเตอริโอเคมี ของสารที่แยกได้ใช้การวิเคราะห์ทางสเปกโทรสโกปี โดยเฉพาะอย่างยิ่งเทคนิค 1D- และ 2D-NMR ร่วมกับการเปรียบเทียบข้อมูลของสารที่ทราบโครงสร้างแล้ว

21

ΟН

·H

OH

คำสำคัญ: ต้นตากวาง Salacia verrucosa ไตรเทอร์พีน friedelane

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ *ผู้นิพนธ์ประสานงาน, e-mail: sunit@swu.ac.th

Chemical Constituents of the Salacia Verrucosa Wight Stem

Aree Jangruang, Pichit Sudta, Piniti Ratananukul and Sunit Suksamrarn*

ABSTRACT

The chemical investigation of the ethyl acetate extract of the air-dried stem of *Salacia verrucosa* Wight has shown the presence of the three friedelane - type triterpenes: friedelin (1) friedelane-1,3-dione (2) and 26-hydroxyfriedelane-1,3-dione (3) together with a sugar dulcitol (4). The structures and stereochemistry determination of all isolates were accomplished by extensively spectroscopic analyses, especially 1D-and 2D-NMR techniques and by comparison with the reported data.

Keywords: Salacia verrucosa, triterpene, friedelane

Department of Chemistry, Faculty of Science, Srinakharinwirot University

^{*}Corresponding author, e-mail: sunit@swu.ac.th

บทนำ

ต้นตากวาง มีชื่อวิทยาศาสตร์ Salacia verrucosa Wight เป็นพืชในวงศ์ Celastraceae พืชในวงศ์นี้มีทั้งหมดประมาณ 90 สกุล และมีมากกว่า 1,000 ชนิด [1] มีลักษณะเป็นไม้พุ่มกึ่งเลื้อยขนาด เล็ก สูงประมาณ 6 เมตร พาดไปตามต้นไม้ใหญ่ มีกิ่งก้านสาขาปกคลุมหนาแน่น เปลือกเถาสีน้ำตาล มีกระด่างขาว เมื่อตัดฟันตามแนวขวางจะเห็นเส้นวงปีชัดเจน และมีน้ำยางสีแดงไหลออกมา ใบเป็นใบเดี่ยว รูปรี เรียงตรงข้าม ปลายใบและโคนใบแหลม เส้นแขนงใบเล็ก แผ่นใบเขียวเรียบมัน ผลกลม ผิวเรียบสีเขียว เมื่อสุกสีเหลืองหรือส้ม เนื้อหุ้มเมล็ดสีขาว (รูปที่ 1) ออกดอกระหว่างเดือนมกราคม - กุมภาพันธ์ และ ออกผลระหว่างเดือนมีนาคม - พฤษภาคม แหล่งที่พบ พบในป่าดิบแล้ง ชอบแสงแดดรำไร ขึ้นได้ดีในที่ชิ้น ผลสุก และเนื้อหุ้มเมล็ดสีขาวนำมารับประทานได้ รสหวาน ขยายพันธุ์โดยใช้เมล็ด พบได้ในประเทศ อินเดีย ไทย พม่า ลาว และมาเลเซีย [2, 3] พืชในสกุล Salacia หลายชนิดนำมาใช้เป็นยาแผนโบราณ เช่น *S. reticulate, S. oblonga* และ *S. chinensis* หรือ ต้นกำแพงเจ็ดชั้น [2] มีฤทธิ์ต้านแบคทีเรีย ต้านมะเร็ง ต้านมาลาเรีย และมีฤทธิ์ทำลายอสุจิ [4] ใช้กันอย่างแพ่ร่หลายในประเทศศรีลังกา จีน และ ไทย เช่น ถำต้นของ *S. chinensis* ใช้เป็นยาขับลม ขับระดู บำรุงเลือด บำรุงหัวใจ ต้านการอักเสบ ลดเบาหวาน แก้ระดูขาว และ รักษาโรคปวดตามข้อตามกล้ามเนื้อ นอกจากนี้ยังมีคุณสมบัติเป็นสารต้านอนุมูลอิสระ [4] ส่วนของราก *S. oblonga* ให้เป็นยารักษาโรคหนองในเนื่องจากติดเชื้อ *gonococcus* แก้ใขข้ออักเสบ

(ข)

(ก)

รูปที่ 1 ลักษณะทั่วไปของต้นตากวาง (ก) ใบ (ข) ลำต้น (ค) ผลดิบ (ง) ผลสุก

อาการคัน โรคหืด และโรคเบาหวาน เปลือกรากของ *S. oblonga* ยังใช้เป็นยาต้านการอักเสบ [5] ส่วนต้น ตากวาง *S. verrucosa* เนื้อไม้มีรสฝาดเมา บำรุงเลือด แก้โลหิตจาง แก้โลหิตและน้ำเหลืองพิการ บำรุง ตับไต แก้ระดูขาว แก้ไตพิการ แก้ปวดหลังปวดเอว [6] จากสรรพคุณดังกล่าวของพืชในสกุล *Salacia* นับว่ามีคุณประโยชน์ที่น่าสนใจ และยังไม่พบรายงานวิจัยของต้นตากวาง ดังนั้นผู้วิจัยจึงสนใจที่จะศึกษาองค์ ประกอบทางเคมีของต้นตากวาง

อุปกรณ์และวิธีการทดลอง

ใช้ส่วนลำต้นตากวางที่เก็บจาก บ้านโคกฮัง ตำบลบ่อพันขัน อำเภอสุวรรณภูมิ จังหวัดร้อยเอ็ด เมื่อเดือน กุมภาพันธ์ พ.ศ. 2550 การบันทึกค่า R_f ของสารใช้แผ่น precoated silica gel 60 GF₂₅₄ และ การหาตำแหน่งของสารบน TLC โดยใช้ anisaldehyde agent โดยนำไปทาบนแผ่น TLC แล้วนำไป ให้ความร้อนที่ 80-120 °C นาน 1 นาที ซึ่งจะปรากฏเป็นสีแตกต่างกัน การบันทึกจุดหลอมเหลวใช้เครื่อง Griffin, ค่า optical rotation ใช้เครื่อง Jasco DIP-370 Digital polarimeter, IR spectrum ใช้เครื่อง Perkin Elmer FT-IR spectrum BX spectrophotometer ในสภาพ KBr disc, UV spectrum ใช้เครื่อง Shimadzu UV-2401PC spectrophotometer การบันทึกข้อมูล ¹H- และ ¹³C-NMR ใช้เครื่อง Bruker Avance 300 FT-NMR spectrometer ที่ 300 MHz สำหรับ ¹H-NMR spectrum และที่ 75 MHz สำหรับ ¹³C-NMR spectrum โดยเทียบกับสัญญาณของตัวทำละลายที่ไม่ถูกดิวเทอเรตที่ $\delta_{\rm H}$ 7.24 และ $\delta_{\rm C}$ 77.00 ppm ของตัวทำละลาย CDCl₃, และ ที่ $\delta_{\rm H}$ 4.70 ppm ของตัวทำละลาย D₂O, ¹H- และ ¹³C-NMR spectrum ตามลำดับ และข้อมูลของ Mass spectrum บันทึกด้วยเครื่อง Finnigan LC-Q mass spectrometer และ MicrOTOF, Bruker Daltonics mass spectrometer

วิธีการทดลอง

นำลำต้นตากวางที่แห้งและบดละเอียด (10.2 กิโลกรัม) มาสกัดด้วยตัวทำละลายเอทิลอะซีเตต 23 ลิตร ที่อุณหภูมิห้องเป็นเวลา 3 วัน กรองแล้วระเหยเอทิลอะซีเตตออกจนแห้ง ทำการสกัดซ้ำทั้งหมด 5 ครั้ง ได้ส่วนสกัดชั้นเอทิลอะซีเตตเป็นของแข็งสีเขียวอมเหลือง (209.0 กรัม) แบ่งส่วนสกัดชั้นเอทิล อะซีเตต (40.0 กรัม) มาแยกต่อด้วยคอลัมน์โครมาโทกราฟีชนิดเร็ว (silica gel 60 GF₂₅₄, 150.0 กรัม) ใช้ระบบชะเป็นเฮกเซน เฮกเซน - ไดคลอโรมีเทน (เพิ่มความมีขั้วระบบละ 10% ใช้ระบบละ 500 มิลลิลิตร) ไดคลอโรมีเทน ไดคลอโรมีเทน - เอทิลอะซีเตต (เพิ่มความเป็นขั้วระบบละ 10% ใช้ระบบละ 300 มิลลิลิตร) เอทิลอะซีเตต เอทิลอะซีเตต - เมทานอล (เพิ่มความเป็นขั้วระบบละ 10% ใช้ระบบละ 300 มิลลิลิตร) เอทิลอะซีเตต เอทิลอะซีเตต - เมทานอล (เพิ่มความเป็นขั้วระบบละ 10% ใช้ระบบละ 300 มิลลิลิตร) เอทิลอะซีเตต เอทิลอะซีเตต - เมทานอล (เพิ่มความเป็นขั้วระบบละ 10% ใช้ระบบละ 300 มิลลิลิตร) และ เมทานอล เก็บครั้งละ 100 มิลลิลิตร ตรวจสอบด้วย TLC และรวมส่วนที่แสดงผลเหมือนกัน ได้กลุ่มสาร ทั้งหมด 13 กลุ่ม เมื่อนำสารกลุ่ม 3 [1.7 กรัม, ได้จากการชะด้วยเฮกเซน - ไดคลอโรมีเทน, 80: 20 ถึง 70: 30, ไดคลอโรมีเทน และ ไดคลอโรมีเทน - เอทิลอะซีเตต (95: 5)] มีลักษณะเป็นสารหนิดสีส้ม มาแยก ต่อด้วยคอลัมน์โครมาโทกราฟี อีก 3 ครั้ง (silica gel, 35.0 กรัม) ใช้ระบบชะเป็น เฮกเซน - อะซีโตน (98: 2) ได้สารประกอบ **1** (friedelin, 30.0 มิลลิกรัม) นำสารกลุ่ม 4 (11.9 กรัม, ได้จากการชะด้วยเฮกเซน - ใดคลอโรมีเทน, 70: 30 ถึง 60: 40) มีลักษณะเป็นสารหนืดสีเหลืองเขียว แล้วนำมาล้างด้วยตัวทำละลาย เฮกเซนตามด้วยอะซีโตนที่เย็น ได้ตะกอนสีขาวเหลือง (6.5 กรัม) นำมาแยกต่อด้วยคอลัมน์โครมาโทกราฟี (silica gel, 65.0 กรัม) ใช้ระบบชะเป็นเฮกเซน - ไดคลอโรมีเทน (90:10 ถึง 70:30) ได้สารประกอบ **2** (friedelane-1,3-dione, 6.3 กรัม) นำสารกลุ่ม 6 (1.9 กรัม, ได้จากการชะด้วยเฮกเซน - ไดคลอโรมีเทน, 40: 60 ถึง 20: 80) มีลักษณะเป็นของแข็งหนืดสีเขียวอมเหลือง นำมาล้างด้วยตัวทำละลายเฮกเซนตาม ด้วยอะซีโตนได้ตะกอนสีเขียวเหลือง (731.8 มิลลิกรัม) ซึ่งนำมาแยกต่อด้วยคอลัมน์โครมาโทกราฟี (silica gel, 15.0 กรัม) ใช้ระบบชะเป็นเฮกเซน - อะซีโตน (92: 8) ได้สารประกอบ **3** (26-hydroxyfriedelane-1,3-dione, 48.7 มิลลิกรัม) นำสารกลุ่ม 13 (2.7 กรัม, ได้จากการชะด้วยเมทานอล) เป็นของแข็งสีน้ำตาล เข้ม นำมาแยกต่อด้วยคอลัมน์โครมาโทกราฟี (silica gel, 65.0 กรัม) ใช้ระบบชะเป็นเอทิลอะซีเตต - เมทานอล (85: 15 ถึง 65: 35) ได้สารประกอบ **4** (dulcitol, 230.3 มิลลิกรัม)

ผลการทดลอง

จากการนำส่วนสกัดชั้นเอทิลอะซิเตตของลำต้นตากวางมาทำการแยกและทำให้บริสุทธิ์ด้วยเทคนิค คอลัมน์โครมาโทการฟี และนำสารที่แยกได้มาตรวจสอบด้วยเทคนิค TLC, NMR และ MS สเปกโทรสโกปี พบว่าได้สารบริสุทธิ์ 4 ชนิด ดังนี้

Friedelin (1) เป็นของแข็งสีขาว mp 248-250 °C (d); λ_{max}^{MeOH} 203 (3.14), 254 (2.11) nm; υ_{max}^{KBr} 1715 cm⁻¹ [lit. 1702 cm⁻¹] [7]; [α]_D^{27.2} 11.0 ° (c. 0.43, CHCl₃) [lit. -22.5 ° (c. 1.0, CHCl₃)] [7]; ¹H- และ ¹³C-NMR (CDCl₃) (แสดงในตาราง 1 และ 2) ESMS (+ve) *m/z* (% rel. intensity) : 427 [M+H]⁺ (100)

Friedelane-1,3-dione (2) เป็นสารที่พบในปริมาณมากที่สุด มีลักษณะเป็นของแข็งสีขาว mp 268-270 °C (d) [lit. mp 270-272 °C] [7]; λ_{\max}^{MeOH} 220 (3.72), 260 (3.0) nm [lit. 218 (6100) และ 260 (5000)] [7]; $[\alpha]_D^{27.2}$ +4.1 ° (c. 0.5070, CHCl₃) [lit. +2.2 ° (c. 0.14, CHCl₃)] υ_{\max}^{KBr} [7]; 1732 และ 1705 cm⁻¹ [lit. 1730 และ 1704 cm⁻¹] [7]; ¹H- และ ¹³C-NMR (CDCl₃) (แสดงในตาราง 1 และ 2) ESMS (-ve) m/z (% rel. intensity) : 439 [M-H]⁻ (100)

26-Hydroxyfriedelane-1,3-dione **(3)** เป็นสารที่พบมากเป็นอันดับที่สอง มีลักษณะเป็น ของแข็งสีขาว mp 266-268 °C (d); $\lambda_{\text{max}}^{\text{MeOH}}$ 218 (3.00), 260 (3.36), 296 (2.91) nm; $\upsilon_{\text{max}}^{\text{KBr}}$ 1732, 1720 และ 3548 cm⁻¹; $[\alpha]_D^2^{-8.1}$ -4.4° (c. 0.47, CHCl₃); ¹H- และ ¹³C-NMR (CDCl₃) (แสดงในตาราง 1 และ 2) ESMS (-ve) *m/z* (% rel. intensity) : 455 [M-H]- (100)

Dulcitol **(4)** มีลักษณะเป็นของแข็งสีขาว mp 173-175 °C [lit. 188-189 °C] [8] v_{max}^{KBr} : 3242, 1458, 1378, 1354, 1208, 1117, 1078, 1048, 1030 cm⁻¹; ESMS (+ve) *m/z* (% rel. intensity) : 205 [M+Na]⁺ (35) ¹H- และ ¹³C-NMR (บันทึกใน D₂O) δ_{H} ที่ 3.84 (2H, t, *J* = 6.4 Hz) 3.55 (4H, d, *J* = 7.1 Hz) δ_{C} ที่ 70.1, 69.4 และ 63.2 ppm

ตำแหน่ง	δ (ppm)					
	Friedelin (1)	Friedelane-1,3-dione (2)	26-Hydroxyfriedelane-1,3-dione (3)			
1	1.93, 1.62	-	-			
2	2.40, 2.33	3.43 (1H, d, J = 15.9 Hz)	3.44 (1H, d, $J = 15.9$ Hz)			
		3.22 (1H, d, J = 15.9 Hz)	3.23 (1H, d, J = 15.9 Hz)			
3	-	-	-			
4	2.21 (1H, q, $J = 6.3$ Hz)	2.55 (1H, q, J = 6.6 Hz)	2.54 (1H, q, $J = 6.5$ Hz)			
5	-	-	-			
6	1.71	1.87, 1.35 (2H, d, J = 10.5 Hz)	1.20, 1.85			
7	1.43	1.35	1.80, 1.60			
8	1.41	1.28 (1H, m)	1.35			
9	-	-	-			
10	1.52	2.35 (1H, s)	2.38 (1H, s)			
11	1.34	2.12 (1H, d, J = 13.2 Hz)	1.65, 2.16			
12	1.34	1.45, 1.25	1.10, 1.30			
13	-	-	-			
14	-	-	-			
15	1.40, 1.12	$1.45, \ 1.25$	1.15, 2.10			
16	ca 1.57	1.60	1.65			
17	-	-	-			
18	1.57	1.58	1.46			
19	1.51, 1.20	1.32	1.65			
20	-	-	-			
21	ca 1.51	1.44-1.24 (2H, m)	1.35, 0.95			
22	1.50, 0.95	1.42, 1.25	1.50, 0.90			
23	0.86 (3H, d, J = 6.3 Hz)	1.03 (3H, d, $J = 6.6$ Hz)	1.00 (3H, d, J = 6.5 Hz)			
24	0.70 (3H, s)	0.67 (3H, s)	0.67 (3H, s)			
25	0.84 (3H, s)	1.17 (3H, s)	1.35 (3H, s)			
26	0.97 (3H, s)	1.00 (3H, s)	4.13 (1H, d, $J = 11.5$ Hz)			
27	1.02 (3H, s)	0.99 (3H, s)	1.03 (3H, s)			
28	1.15 (3H, s)	1.15 (3H, s)	1.11 (3H, s)			
29	0.97 (3H, s)	0.97 (3H, s)	0.91 (3H, s)			
30	0.93 (3H, s)	0.92 (3H, s)	0.94 (3H, s)			

ตารางที่ 1	ข้อมูล	¹ H-NMR	ของสารประกอบ	Friedelin	(1),	Friedelane-1,3-dione	(2)	ແລະ
	26-Hydroxyfriedelane-1, 3-dione (3) บันทึกใน			CDC	1 ₃			

ตำแหน่ง	δ (ppm)				
	Friedelin (1)	Friedelane-1,3-dione (2)	26-Hydroxyfriedelane-1,3-dione		
1	22.2	202.8	202.8		
2	41.5	60.6	60.6		
3	213.2	204.1	204.1		
4	58.2	59.0	58.9		
5	42.0	37.8	38.0		
6	41.3	40.6	41.7		
7	18.2	18.0	20.4		
8	53.1	52.1	52.0		
9	37.4	37.2	37.1		
10	59.4	71.8	72.4		
11	35.6	34.5	35.0		
12	30.5	30.1	29.8		
13	39.7	39.4	39.6		
14	38.3	38.2	42.0		
15	32.7	32.4	24.1		
16	36.0	35.8	35.3		
17	30.0	29.9	30.3		
18	42.8	42.6	43.4		
19	35.3	35.2	35.4		
20	28.1	28.1	28.3		
21	32.4	32.7	32.9		
22	39.2	39.2	39.1		
23	6.8	7.2	7.2		
24	14.6	15.9	15.7		
25	17.9	17.9	17.8		
26	20.2	20.3	63.9		
27	18.6	18.7	19.6		
28	32.1	32.0	31.6		
29	31.7	31.7	34.4		
30	35.0	34.9	31.9		

ตารางที่ 2 ข้อมูล ¹³C-NMR ของสารประกอบ Friedelin (1), Friedelane-1,3-dione (2) และ 26-Hydroxyfriedelane-1,3-dione (3) บันทึกใน CDCl₃

สรุปและวิจารณ์ผลการทดลอง

ในการสกัดสารจากลำต้นตากวางด้วยตัวทำละลายเอทิลอะซีเตต ตามด้วยการแยกให้บริสุทธิ์ด้วย คอลัมน์โครมาโทกราฟี แล้วนำสารที่แยกได้มาหาสูตรโครงสร้างด้วยเทคนิคทางสเปกโทรสโกปี โดยเฉพาะ อย่างยิ่งเทคนิค 1D- และ 2D-NMR ร่วมกับทำการเปรียบเทียบข้อมูลต่างๆ ของสารที่ได้กับที่มีผู้รายงานไว้ แล้ว พบว่าได้สารประกอบไตรเทอร์พีน ประเภท friedelane 3 ชนิด และสารประกอบน้ำตาลอีก 1 ชนิด

ข้อมูล ¹³C-NMR (ตาราง 2) ของสาร 1 พบสัญญาณของคาร์บอนทั้งหมด 30 สัญญาณ ซึ่ง เป็นของ 8 methyl carbon, เป็นสัญญาณแบบ singlet 7 หมู่ และอีกหมู่หนึ่งเป็น doublet มีค่า J = 6.3Hz, WU 11 methylene carbon, 4 methine carbon, 6 quarternary carbon uar carbonyl ketone 1 สัญญาณ ซึ่งสอดคล้องกับการพบหมู่ C=O ที่ 1715 cm⁻¹ ใน IR spectrum และ ESMS ของสารนี้ พบ pseudomolecular ion peak ที่ m/z 427 $[M+H]^+$ ซึ่งตรงกับสูตรโมเลกุล $C_{30}H_{50}O+H$ จากการ สืบค้นข้อมูลของพืชในสกุล Salacia พบว่าสารประกอบส่วนใหญ่ที่พบเป็นไตรเทอร์พืนประเภท friedelane ซึ่งมีหมู่ carbonyl อยู่ที่ C-3 ดังนั้นสาร 1 น่าจะมีโครงสร้างเป็น friedelane ด้วย เมื่อทำการเปรียบเทียบ ข้อมูล ¹H- และ ¹³C-NMR (ตาราง 1 และ 2) ของสารประกอบ **1** กับสารประกอบ friedelin [7] พบว่า มีค่าใกล้เคียงกันมาก ในการยืนยันโครงสร้างใช้เทคนิคการทดลอง HMBC พบความสัมพันธ์ที่สำคัญ ระหว่าง Me-23 กับ C-3, C-4, C-5, C-10; Me-24 กับ C-5, C-6, C-10; Me-25 กับ C-8, C-9, C-10, C-11, C-12; Me-26 กับ C-8, C-14; Me-27 กับ C-12, C-13; Me-28 กับ C-16, C-17, C-18, C-22; Me-29 กับ C-20, C-30, C-21 และ Me-30 กับ C-19, C-20 ซึ่งเป็นการยืนยันตำแหน่งของ methyl ทั้ง 8 หมู่ ในการยืนยัน stereochemistry ของหมู่ methyl ทั้ง 8 หมู่ ใช้การทดลอง NOESY พบความสัมพันธ์ที่สำคัญระหว่างหมู่ Me-23 กับ Me-24; Me-24 กับ Me-25; Me-25 กับ Me-26; Me-26 กับ Me-28, H-18; และ Me-28 กับ Me-30 (รูปที่ 2) แสดงว่าหมู่ Me-23, 24, 25, 26, 28, 30 และ H-18 อยู่ด้านเดียวกัน คือ ตำแหน่ง β นอกจากนี้ยังพบความสัมพันธ์ระหว่าง H-4 กับ H-8; H-10 กับ Me-27 แสดงว่า H-4, H-8, H-10 และ Me-27 อยู่ด้านเดียวกัน คือ ตำแหน่ง α ซึ่งสอดคล้อง กับสูตรโครงสร้างของ friedelane ที่มีผู้ศึกษา conformation โดยใช้เทคนิค X-ray ดิฟแฟร์กชัน [9] ดังนั้นจึงสรุปได้ว่า สารประกอบ 1 มีโครงสร้างเป็น friedelan-3-one หรือ friedelin สารนี้มีรายงานการ พบในส่วนเปลือกต้นของ S. beddomei [10] เปลือกรากของ S. campestris [11] ใบของ S. chinensis [12] เปลือกรากของ S. fruticosa [13] และเปลือกต้น S. liana [14] นอกจากนี้ยังพบในพืชสกุลอื่นด้วย ซึ่งพบจากส่วนลำต้นและเปลือกของ Peritassa compta [7] ซึ่งเป็นพืชที่อยู่ในวงศ์ Celastraceae เช่น เดียวกับตากวาง

ร**ูปที่ 2** ข้อมูล HMBC และ NOESY แสดงความสัมพันธ์ที่สำคัญของสารประกอบ **1**

เมื่อพิจารณาข้อมูล ¹H- และ ¹³C-NMR (ตาราง 1 และ 2) สารประกอบ 2 พบสัญญาณ carbon 30 สัญญาณ คล้ายกับสารประกอบ 1 ต่างกันที่สาร 2 มีสัญญาณของ carbonyl carbon เพิ่มขึ้นอีก 1 แห่งที่ δ_c 202.8 และ 204.1 ppm ซึ่งสอดคล้องกับการพบหมู่ C = O ที่ 1732 และ 1705 cm⁻¹ ใน IR spectrum และ ข้อมูล ESMS พบ pseudomolecular ion peak m/z ที่ 439 [M-H]⁻ ซึ่งสอดคล้องกับสูตรโมเลกุล C₃₀H₄₈O₂-H ดังนั้นสาร 2 น่าจะมีโครงสร้างเป็น friedelane ที่มีหมู่ carbonyl อยู่ 2 แห่ง เมื่อพิจารณข้อมูล ¹H-NMR, DEPT และ HMQC พบ methylene proton ที่ δ_H 3.43 (1H, d, J = 15.9 Hz) และ 3.22 (1H, d, J = 15.9 Hz), δ_c 60.2 ppm ซึ่งน่าจะเป็นสัญญาณของ methylene carbon ที่อยู่ระหว่าง carbonyl carbon ดังนั้นสาร 2 น่าจะมีหมู่ carbonyl อยู่ที่ C-1 และ C-2 ข้อมูล HMBC พบความสัมพันธ์ของ methylene proton ที่ δ_H 3.43 (1H, d, J = 15.9 Hz) กับ C-1, C-3, C-4, C-10 และ C-23 (รูปที่ 3) ทำให้ทราบได้ว่า carbonyl carbon ทั้งสองหมู่อยู่ที่ C-1 และ C-2 เมื่อเปรียบเทียบข้อมูล ¹H- และ ¹³C-NMR กับ friedelane-1, 3-dione [7] พบว่ามีค่าใกล้เคียงกันมาก จึงสรุปได้ว่า สาร 2 มีโครงสร้างเป็น friedelane-1,3-dione สารนี้มีรายงานการพบในส่วนเปลือกรากของ *S. campestris* [11] ลำต้นของ *S. chinensis* [15] เปลือก ต้นของ *S. beddomei* [10] และเปลือกรากของ *S. prinoides* [16] นอกจากนี้ยังพบในพืชสกุลอื่นด้วย เช่น ลำต้นและเปลือกของ *P. compta* [7]

ร**ูปที่ 3** ข้อมูล HMBC และ NOESY แสดงความสัมพันธ์ที่สำคัญของสารประกอบ **2**

สาร **3** เป็นของแข็งสีขาว มีจุดหลอมเหลว 266-268 $^{\circ}$ C (d) ข้อมูล ¹H- และ ¹³C-NMR (ตาราง 1 และ 2), DEPT และ HMBC ของสารประกอบ **3** มีลักษณะคล้ายกับสารประกอบ **2** เนื่องจาก พบ carbonyl carbon 2 สัญญาณที่ δ_{c} 202.8 และ 204.1 ppm ต่างตรงที่สาร **2** มีหมู่ methyl carbon 8 หมู่ และ methylene carbon 10 หมู่ ในขณะที่ สาร **3** พบหมู่ methyl carbon 7 หมู่ และ methylene carbon 11 หมู่ แสดงว่าสาร **3** น่าจะมีโครงสร้างหลักเป็น friedelane-1,3-dione ที่มีหมู่

hydroxymethylene ที่ δ_{c} 63.9, δ_{H} 4.13 (1H, d, J = 11.5 Hz) และ 4.03 (1H, d, J = 11.5 Hz) ซึ่งสอดคล้องกับการพบหมู่ C = O ที่ 1732, 1720 และ OH ของ alcohol ที่ 3548 cm⁻¹ ใน IR spectrum และ ข้อมูล ESMS พบ pseudomolecular ion peak m/z ที่ 455 [M-H]⁻ ซึ่งสอดคล้องกับสูตรโมเลกุล C₃₀H₄₈O₃ เมื่อเปรียบเทียบข้อมูล ¹H- และ ¹³C-NMR อย่างละเอียดของสาร **3** กับสาร **2** พบว่าสาร **3** ที่ C-14, C-15 และ C-26 ที่ δ_c 42.0, 24.1 และ 63.9 ppm ต่างจากสาร **2** ที่ C-14, C-15 และ C-26 ที่ δ_c 38.2, 32.4 และ 20.3 ppm ตามลำดับ แสดงว่าหมู่ hydroxymethylene อาจจะอยู่ที่ C-26 ข้อมูล HMBC พบความสัมพันธ์ระหว่าง hydroxymethylene H-26 กับ C-7, C-8, C-13 และ C-15 (รูปที่ 4) แสดงว่าหมู่ hydroxymethylene carbon อยู่ที่ C-26 เมื่อเปรียบเทียบข้อมูล ¹³C-NMR ของ สารประกอบ **3** กับ 26-hydroxyfriedelane-1,3-dione [17] พบว่ามีค่าใกล้เคียงกันมาก และจากการ ยืนยัน stereochemistry ใช้การทดลอง NOESY พบความสัมพันธ์ที่สำคัญระหว่างหมู่ hydroxymethylene H-26 กับ Me-25, Me-28 และ H-18 (รูปที่ 4) แสดงว่าหมู่ hydroxymethylene อยู่ด้านเดียวกับ Me-25, Me-28 และ H-18 ซึ่งอยู่ด้าน β จึงสรุปได้ว่าสาร **3** มิโครงสร้างเป็น 26-hydroxyfridelane-1, 3-dione สารนี้มีรายงานการพบในพืชสกุล *Salacia* พบในส่วนรากของ *S. oblonga* [17] รากของ *S. reticutata* [18] และยังไม่พบรายงานในพืชสกุลอื่นๆ

ร**ูปที่ 4** ข้อมูล HMBC และ NOESY แสดงความสัมพันธ์ที่สำคัญของสารประกอบ **3**

สาร **4** เป็นของแข็งสีขาว ละลายน้ำได้ดี ข้อมูล IR spectrum พบหมู่ OH ที่ 3242 cm⁻¹, mass spectrum wu pseudomolecular ion peak m/z ที่ 205 [M+Na]⁺ สาร **4** น่าจะเป็นน้ำตาลชนิดหนึ่ง ซึ่งแสดงข้อมูล ¹H- และ ¹³C-NMR (บันทึกใน D₂O) $\delta_{\rm H}$ ที่ 3.84 (2H, t, J = 6.4 Hz) 3.55 (4H, d, J = 7.1 Hz) $\delta_{\rm C}$ ที่ 70.1, 69.4 และ 63.2 ppm จากข้อมูล ¹H- และ ¹³C-NMR นี้ บ่งบอกว่าเป็นน้ำตาล ที่โครงสร้างมีความสมมาตรในโมเลกุล จากการสืบค้นข้อมูลของพืชในสกุล *Salacia* มีรายงานการพบ น้ำตาล dulcitol จากส่วนรากของ *S. oblonga* [5] ซึ่งเป็นน้ำตาลที่มีโครงสร้างมีความสมมาตรในโมเลกุล เช่นเดียวกัน เมื่อทำการเปรียบเทียบข้อมูล ¹H- และ ¹³C-NMR ของสาร (**4**) กับ dulcitol [8] พบว่ามี ค่าใกล้เคียงกันมาก ดังนั้นจึงสรุปได้ว่าโครงสร้างของสารประกอบ **4** คือ dulcitol หรือ galactitol ซึ่งมีรสชาติหวานเล็กน้อย นอกจากนี้ ยังพบน้ำตาล dulcitol ในพืชสกุลอื่น เช่น จากส่วนเปลือกต้น *Cassine papillosa* [19] ส่วนรากของ *Maytenus acanthophylla* เป็นพืชที่อยู่ในวงศ์ Celastraceae เหมือนกับต้นตากวาง [20]

กิตติกรรมประกาศ

งานวิจัยนี้ได้รับทุนส่งเสริมกลุ่มนักวิจัยอาชีพ ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (BIOTEC) (ศาสตราจารย์ ดร.อภิชาต สุขสำราญ) ขอขอบคุณ ท่านอาจารย์ สุพรรณ ไวลิขิต ที่ให้ทุน สนับสนุนการศึกษาแก่ นางสาวอารี แจ้งเรือง และคณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ ในการ ให้ทุนส่วนหนึ่งสนับสนุนการทำปริญญานิพนธ์สำหรับบัณฑิตในระดับบัณฑิตศึกษาจากงบประมาณเงินรายได้ คณะวิทยาศาสตร์ ประจำปีงบประมาณ พ.ศ. 2551 และขอขอบคุณ Bioassay Laboratory ศูนย์พันธุ วิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (BIOTEC) ที่ให้ความอนุเคราะห์ในการทดสอบฤทธิ์ทางชีวภาพ และสถาบันวิจัยจุฬาภรณ์ ที่ให้ความอนุเคราะห์ในการบันทึก high resolution mass spectrum

เอกสารอ้างอิง

- Ding-Hou, L. 1964. Celastraceae-II. In: Van Steenis, C. G. G. J. Ed. Flora Malesiana. Jakarta: 6: p. 414-415.
- เต็ม สมิตินันท์. 2544. ชื่อพรรณไม้แห่งประเทศไทย ฉบับแก้ไขเพิ่มเติม พ.ศ. 2544. กรุงเทพฯ. สำนักวิชาการกรมป่าไม้. หน้า 461-462.
- Ding-Hou, L. 1962. Celastraceae-I. In: Van Steenis, C. G. G. J. Ed. Flora Malesiana. Jakarta: 6: p. 227-228.
- 4. Toshio, M., Akinobu, K., Yutana, P., Hisashi, M., and Masayuki, Y. 2003. Structures of New Friedelane Type Triterpenes and Eudesmane-Type Sesquiterpene and Aldose Reductase Inhibitors from *Salacia chinesis. Journal of Natural Product* 66: 1191-1196.
- 5. Hisashi, M., Toshio, M., and Masayuki, Y. 2002. Antidiabetogenic Constituents from Several Natural Medicines. *Pure and Applied Chemistry* 74(7): 1301-1308.
- วุฒิ วุฒิธรรมเวช. 2540. สารานุกรมสมุนไพร รวมหลักเภสัชกรรมไทย. กรุงเทพฯ โรงพิมพ์ โอ. เอส. พริ้นติ้ง เฮ้าส์. หน้า 209.
- JOY, K., and Tinto, W. F. 1992. Friedelane Triterpenoids from *Peritassa compta:* Complete ¹H- and ¹³C-Assignments by 2D NMR Spectroscopy. *Journal of Natural Product* 55(11): 1626-1630.
- Pouchert, J. C., and Behnke, J. 1993. The Aldrich Library of ¹³C- and ¹H-FT-NMR Spectra. Aldrich Chemical. USA. 1: p. 290.
- Gunatilaka, A. A. L., Nanayakkara, N. P. D., and Wezeer, M. I. M. 1983. ¹³C-NMR Spectra of some D: A-Friedo-oleananes. *Phytochemistry* 22(4): 991-992.
- Hisham, A., Kumar, G. J., Fujimoto, Y., and Hara, N. 1996. 1β,15α-Dihydroxyfriedelan-3-one, a Triterpene from *Salacia beddomei*. *Phytochemistry* 43(4): 843-845.
- 11. Paulo, R. F. C., Dulce, H. S. S., Vanderlan, S. B., and Maysa, F. 2005. Antioxidant Quinonemethide Triterpenes from *Salacia campestris*. *Chemistry Biodiversity* 2: 367-372.

- 12. Yi, Z., Seikou, N., Tao, W., Hisashi, M., and Masayuki, Y. 2008. The Absolute Stereostructures of Three rare D: B-Friedobaccharane Skeleton Triterpenes from the Leaves of *Salacia chinensis*. *Tetrahedron* 64: 7347-7352.
- 13. Reddy, G. C. S., Ayengar, K. N. N., and Rangaswami, A. 1975. Chemical Components of the Root Bark of *Salacia fruticosa* Heyne. *Indian Journal of Chemistry* 13: 342-343.
- Setzer, W. N., Setzer, M. C., Hopper, A. L., Moriarty, D. M., Lehrman, G. K., Niekamp, L., Morcomb, S. M., Bates, R. B., McClure, K. J., Stessman, C. C., and Haber, W. A. 1998. The Cytotoxic Activity of a *Salacia Liana* Species from *Monteverde*, Costa Rica, is due to a High Concentration of Tingenone. *Planta Medica* 64: 583.
- 15. Akinobu, K., Toshio, M., Hisashi, M., and Masayuki, Y. 2003. Structures of New Friedelane-and Norfriedelane-Type Triterpenes and Polyacylated Eudesmane-Type Sesquiterpene from *Salacia chinesis* LINN. (*S. prinoides* DC., Hippocrateaceae) and Radical Scavenging Activities of Principal Constituents. *Chemical and Pharmaceutica Bulletin* 51(9): 1051-105.
- 16. Tewari, N. C., Ayengar, K. N. N., and Rangaswami, S., 1973. Triterpenes of the Root-Bark of *Salacia prenoides* DC. *Journal of Chemical Society Perkin Transaction I.* 146-152.
- Hisashi, M., Murakami, T., Yashiro, K., Yamahara, J., and Yoshikawa, M. 1999. Antidiabetic Principles of Natural Medicines. IV. Aldose Reductase and α-Glucosidase Inhibitors from the Roots of *Salacia oblonga* Wall. (Celastraceae): Structure of a New Friedelane-Type Triterpene, Kotalagenin Acetate. *Chemical and Pharmaceutica Bulletin* 47(12): 1725-1729.
- Yoshikawa, M., Shimoda, H., Nishida, N., Takada, M., and Matsuda, H. 2002. Salacia reticulata and its Polyphenolic Constituents With Lipase Inhibitory and Lipolytic Activities Have Mild Antiobesity Effects in Rats. Journal Nutritional 132: 1819-1824.
- Drewes, S. E., and Mashimbye, M. J. 1993. Flavanoids and Triterpenoids From *Cassine papillosa* and The Absolute Configuration of 11,11-Dimethyl-1,3,8,10-Tetrahydroxy-9-Methoxypeltogynan. *Phytochemsitry* 32(4): 1041-1044.
- Djalma, M de O., Gracia, D. de F. S., Lucienir, P. D., and Sidney A. V. F. 2006. Chemical Constituents Isolated from Roots *Maytenus acanthophylla* Reissek (Celastraceae). *Biochemical Systematics and Ecology* 34: 661-665.

ได้รับบทความวันที่ 12 มีนาคม 2552 ยอมรับตีพิมพ์วันที่ 20 เมษายน 2552