UNAIINIVY

AADUNAZE DUTNNVIIVN NMT

dnlya 3 Suthana” wag J¥swa WL 5§

(7] |l
UNANYD
IFINATINAABVUASL DYTANVDY NATIBININTY 89 HAITNAAYAD NAITIBS
g3 “u #afdo

Sy)+mf(x+y)= f(xy+x)+ f(my)
Iay
SOpy)+mf (x+y)= f(xy+x)+mf(y)

o x,yeR oz meR\{0,1} Wudasilan

M ag: amaBeilingn umaBaladsued “u 1 desnw

MAINANAAN A5 WNINNFUIABATAN A5

*Q’ﬁwuﬁﬂiz 1Y, e-mail: kalamung05@hotmail.com



42 SWU Sci. J. Vol. 30 No. 1 (2014)

Solutions and Stabilities of Some Equations
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ABSTRACT

We find the solutions and stabilities of two functional equations which are a generalized

version of Davison functional equation, i.e.,

Sy)+mf(x+y)= f(xy+x)+ f(my)

and
Sy +mf (x+y)=f(xy+x)+mf(y)

where x,y €R and m € R\{0,1} is a constant.
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1. Introduction

In 1940, Ulam [1] introduced the following problem, which has since been referred
to as a “stability” problem: let f be a mapping from a group (G,,+) to a metric group (G,,+) with

metric d(.,.) such that

d(f(x+y), )+ f(y)<e

Do there exist a group homomorphism L:G, — G, and a constant 6, >0 such that
d(f(x),L(x))<9, for all xe G,? This means that if we change a bit of the functional
equation, then there is a little effect to its solution? In 1941, Hyers [2] proved that if f : E, = E,

is a function satisfying

[ f(x+)=f(x)-f([<d

for all x,y € E,, where E, and E, are Banach spaces and dis a given positive number, then there

exists a unique additive function 7': £, — E, such that
[ f()-T(x)[|<o
for all x € E,. If f is a real continuous function on IR satisfying
| f(x+ )= f(x)=f(»)]<0,
it was shown by Hyers and Ulam that there exists a constant k such that
| f(x)—kx|<25.
In 1980, T.M.K. Davison [3] introduced the functional equation

flxy) + flx +y) = flxy + x) + fy) (*)

in the 17" ISFE (Oberwolfach). During the meeting, W. Benz presented that every continuous
solution f :IR— IR of (*) for all x, y € Ris of the form f(x) = ax + b where a,b are real constants.

Next, in 1999, Jung and Sahoo [2] found the stability of (*) and its Pexider form:

flxy) + glx +y) = hixy + x) + k(y). (*%)
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In 2000, IR. Girgensohn and K. Lajk6 [4] solved the general solution of (*) and (**) for

x,y €R and for x,y e R, respectively.

In this paper, we propose the general solutions and stabilities of two functional equations which

are an extended version of (*). Those are the functional equations

fixy) + mftxc + y) = flxy + mx) + fimy) (1)
and

fixy) + mflxc +y) = flxy + mx) + mfly) (2)

where x,y eIR and m € R\{0,1}.

2. Solutions

We find the solutions of (1) and (2), the results are

Theorem 2.1 For a fixed m € R\{0,1}. The function f:R—>R satisfies the functional
equation (1) for all x,y €R if and only if f is an additive function such that f(mx) = mf(x).

Proof. For a fixed m € R\{0,1}. Suppose that f is an additive function such that f(mx) = mf(x).

Thus, we obtain

flxy) + flimx + my)
flxy) + flmx) + flmy)
flxy + mx) + flmy),

flx,y) + mflx +y)

for all x,y eR. So f satisfies (1).

Next, we show the “if part” of this theorem. Assume that f:R— R satisfies the functional
equation (1) for all x,y elR.

Replacing y by y+m into (1), we get
flxy + mx) + mf(x + y + m) = flxy + 2mx) + f(my + m?). (2.1)
By adding (1) and (2.1), we have

Flxy) + mf(x +y) + mf(x + y + m) = f(my) + f(xy + 2mx) + fimy + m?).

From the above equation, we substitute x by %C and y by 2y:

FOxy) +mf(G + 2y) + mf(G + 2y +m) = f(2my) + flxy + mx) + f(2my + m?). (2.2)

Next, we subtract (1) from (2.2), that is, (2.2) - (1), to get
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mf(% +2y) + mf(% +2y + m) - mf(x +y) =f(2my) + f(2my + m?) - f(my).

Then, replacing x by x—y in the above equation, we get

mf(%c + %y) + mf(% + %y +m) - mf(x) = f(2my) + f(2my + m?) - f(my).

Replacing y by % in the last equation:

2my
3

mf(§+§)+mf<§+§+m>—mf(x>=f< >+f(2’;’y +m2>—f(%.

Now, it is of the pexider form:

Ag(x +y) =A,(x) + A, (y)

where
2mt 2mt 5 mt
A1(1)5=f(T)+f(T+m )_f(T)’ (2.3)
A, (1) := mf(1), (2.4)
Ay:= mf(%) + mf(% +m). (2.5)

So there exists an additive function 4:IR—IR and constants d,,d, € R such that

A, (x) =Alx) +d,, (2.68)
Ay(x) = A(x) +d,, and (2.7)
Ay(x) =Alx) +d, + d,. (2.8)
From (2.4) and (2.7), we get
1 1 d
()= Ay (%) =7 A(x) + - (2.9)

From (2.3) and (2.6), we have

2mx 2mx

A +d, =[5+ [ (G +m) = (). 2.10)
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Hence, from (2.9) and (2.10), we obtain that

2mxy Ay L2y Ly
m 3 m

2mx. mx, d,
3 m m

A(x)+d, = A %) -
m 3

m

1 1 d
:%A(mx)+%A(m2)+W2. (2‘11)

From (2.5), (2.8) and (2.9), we get

Aug+¢+d2:mﬂ§ywm%§+m)

Am+¢+@=a%§+@+A§+mﬁdz

A(x)+d, = A(x)+ A(m) +d,
d, = A(m)+d,. (2.12)

Next, we substitute x by —m in (2.11):

A(-m)+d, = %A(—mz) +%A(m2) +£
mA(-m) + md, = d,
m(-A(m) +d,) = d,.
By (2.12), we obtain
md,,

(m-1)d,

Since m# 1, so

d,=0. (2.13)
And replacing x by 0 in (2.11), we have
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A(0)+d, :%A(O)+%A(m2)+%
md, :A(m2)+d2.
From (2.12) and (2.13), so
mA(m) = A(m?). (2.14)

By using (2.11), (2.12), (2.13) and (2.14), we obtain that

A(x)+d, = % A(mx) + %A(mz) + %
mA(x) +md, = A(mx)+ A(m")
mA(x) +mA(m) = A(mx)+ mA(m)

mA(x) = A(mx).
So, by (2.9), we get
()= A)

where A4 :IR—R is an additive function such that

flmx) = %A(mx) =% mA(x) = A(x) = mf(x), i.e., fis an additive function where flmx) = mf(x).

Theorem 2.2 For a fixed m € R\{0,1}. If the function f:R—R satisfies the functional
equation (2) for all x,y €R , then f is of the form

flx) =A(x) +b
where A:IR—IR is an additive function and b eR is a constant.

Proof. Suppose that f:R—> R satisfies the functional equation (2) for all x,y €R. First,
we substitute y by y+m in (2):

Floxy +mx) + mf(x +y +m) = flxy + 2mx) + mf(y + m). (2.15)
By adding (2) and (2.15), we have
Flxy) + mf(x +y) + mf(x + y + m) = mf(y) + fixy + 2mx) + mf(y + m).
Replacing x by % and y by 2y in the last equation, we get
fOy) +mf(G +2y) + mf(G + 2y + m) = mf(2y) + flxy + mx) + mf(2y +m). (2.16)
From (2) and (2.16), we get
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mf(%c +2y)+m (% +2y + m) - mf(x +y) = mfi2y) + mf(2y + m) — mf(y)
G+ 2y) + fG + 2y + m) = flx +y) = f(2y) + f(2y + m) - fiy).

Next, replacing x by x - y:

x3y

G+ f( W2 +M) J)=fCy)+fQRy+m)—f(y).

By substituting y by % in the above equation, we obtain
Xy Xy 2y 2y R
)+ fE+r=rm) = () + )+ f(—+m) - f(=).
f(2 2) f(2 5 )=f(x) f(3) f(3 ) f(3)

We see that the above equation is of the pexider form
As(x +y) =A,x) + A, (y)

where

4,(0) = f(%) + f(% m)= ),
A1) = (1),
A(t) = f(%) ¥ f(é +m).

So the general solutions are

Ay(1):= A() +b and

where 4 :IR—IR is an additive function and a,b are constants. So

flx) =A(x) +b

3. Stabilities

In this section, we consider the stabilities of (1) and (2) with new condition, i.c.,

m is a nonzero real number. The results are stated below.

Theorem 3.1 For a fixed m, §eR with m=0 and 5> 0. If the function f:R— R satisfies the

inequality
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| flxy) + mf(x +y) - flxy + mx) — f(my)| <8 (3.1)
for all x,y R, then there exists a unique additive function A:R—IR such that

FG)= £0) = A <,12—5|

forall x eR.
Proof. First, we replace y by y +m in (3.1):

[ fxy + mx) + mf(x + y + m) - flxy + 2mx) - f(my + m?)| < 6. (3.2)
By adding (3.1) and (3.2), we get

| fGp)+mf (x+y) = f(my)+mf (x+y+m)— f(xp+2mx) = f(my +m)]|
<[ fCp)+mf (x+y) = f(xy+mx) = f(my) | +] f(xy+mx)+mf (x+y+m
f(xy+2mx)— f(my+m’)| <26 .

Replacing x by % and y by 2y in the above inequality, we obtain
X X
|f(xy)+Mf(5+2y)—f(2my)+Mf(5+2y+"1)

— f(xy+mx)— fQmy+m*)[<26. (3.3)

From (3.1) and (3.3), we get

| mf<§+ 2y)— £ 2my)+ mf<§+ 2y +m)— fQmy+m*)—mf (x+ )+ f(my)|
<|=f () =mf (x+¥)+ [y +mx) + [ (my)]
+!f(xy)+mf<§+2y>—f(zmy>+mf<§+2y+m>—f(xy+mx)—f(2my+m2>\

<30.

Replacing x by x -y in the above inequality, we have

f(f+3—y)+ f( L3 +m) mf (x)— f2my)— f(2my +m*)+ [ (my)| <36 .
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Letting y by % we obtain
Xy Xy 2my 2my my
mf (=+=)+mf (=+=+m)—mf (x)— f(—)— f(——+m’)+ f(—)|<35.
S+ mf a2 m)=mf ()= f () = (2w + () 3.4)
Next, we let g,/ :IR—R define by

2mx 2mx

mx
g(x)= f(T)+f(T+m)_f(7)

W= mfC)emfEem), 59
2 2
From (3.4) and (3.5), we get
[h(x+y)—mf (x)-g(¥)[<36. (3.6)
Replacing y by 0 in (3.6), we obtain
| h(x)—mf (x)— g(0)[<35 . (3.7)
Similarly, we replace x by 0 in (3.6), we have that
|h(y)—mf (0)—g(»)|£305. (3.8)
Next, we define
H(x) = h(x)—mf(0)-g(0). (3.9)
By using (3.6), (3.7), (3.8) and (3.9), we have
|H(x+y)—H(x)=H(y)|=[h(x+y)—h(x)=h(y)+mf(0)+g(0)|
<[h(x+y)—mf(x)=g(¥) |+ mf (x)—h(x)+g(0) [+ | g(y) = h(y)+mf(0) |
<95 (3.10)
Now using Hyers theorem [2], we get that
| H(x)— A(x) <95, (3.11)

. H(@2"
where 4:IR—[R is a unh@gie additive function such that A(x) = hm%. By (3.7), (3.9)

and (3.10), we have

| mf (x)—mf (0) = A(x) | <[ =h(x) +mf (x)+g(0) |+ [ h(x) —mf (0) - g(0) - A(x) |
<126.
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Thus, we obtain

) £~ L A< 122

for all x,yeR

Theorem 3.2 For a fixed m,5 € Rwith m#0 and §> 0. If the function f:R—R satisfies
the inequality

| f(y)+mf (x+p)= f(xy+mx)—mf(y)|< 6, (3.12)

then there exists a unique additive function A:IR—IR such that

()~ f(O) - A(x) | <120
|m|

forall meR.

Proof. First, we substitute y by y+m in (3.12):
| f(xy+mx)+mf(x+y+m)—f(xy+2mx)—mf (y+m)|<5. (8.13)
By adding (3.12) and (3.13), we get
| ) +mf (x+py)=mf (y)+mf (x+y+m)— f(xy+2mx)—mf(y+m)|
<[ fGy)+mf (x+y) = f(xy+mx)—mf (y)]

+| fy+mx)+mf (x+y+m)— f(xy+2mx)—mf(y+m)|
<26.

Replacing x by % and y by 2y in the above inequality, we get

| f () + mf<§+ 2y)—mf (2y)+ mf(§+ 2y+m)— f(xy+mx)—mf Qy+m)|<25. (3.14)
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From (3.12) and (3.14), we have that

| mf(% +2y)—mf (2y) + mf(g +2y+m)—mf (x+y)+mf ()]
<|=f(xy)—mf (x+ )+ f(xy+mx)+mf(y)|
+|f(xy>+mf(§+2y>—mf(zy)+mf<§+2y+m)—f(xy+mx>—mf<2y+m)l
30.

So we get

|f(§+2y)+f<§+2y+m)—f<x+y)—f(zy)—f<2y+m)+f<y)|s%.

From the last inequality, we replace x by x —y to get

G+ G e m= 0= F0)= [y em)+ W] <P

And then substitute y by %z

2 2 35
QPG M= O~ fC=fGam+fQI=7 1 (319

Next, we define the function g,% R—R by

g(x)= f(z—;>+f(%+m>—f(§>

X X (3.16)
hx)= f(Z)+ (S +m).
2 2
From (3.15) and (3.16), we get
30
|h(X+y)—f(X)—g(y)|Sm- (3.17)
From (3.17), we substitute y by 0 and x by 0 respectively to get
30
|h(x) = f(x)-g(0)[<— (3.18)

|m|
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and

h(3) - £(0)-g() | < % (5.19)
Next, we define

H(x)=h(x)- f(0)-g(0) (3.20)

Using (3.17), (3.18), (3.19) and (3.20), we obtain

|H(x+y)-H(x)-H()|=[h(x+y)=h(x)=h(y)+ f(0)+g(0)]|
<[h(x+y)=f(x)=gW)[+] f(x)=h(x)+g(0) [+] g(y)—h(y)+ f(0) |
96
<=

STl
By Hyers theorem [2], we obtain

96
H(x)—A(x)|£—
| | ™ (3.21)

where 4:R—R is a unique additive function such that A(x)=lim

H(2"x)
(3.18), (3.20) and (3.21), we obtain

. Now using

| ()= f(0)=A) [ <[/ (x)+g(0)=h(x)[+]|h(x) - f(0)-g(0)— A(x)|
<|h(x) = f(x)=g(0) [ +[ H (x)— A(x) |
12

| m]
for all xe R.

From Theorem 3.1 and Theorem 3.2, if we let m = 1, then we obtain the result of
Jung and Sahoo [2]:

Corollary 3.3 If the function f:R—>R satisfies the inequality

| SO+ f(x+ )= [y +x) = f(»)[<6

for all x,y R, then there exists a unique additive function A :IR—IR such that

| f(x)— f(0)— A(x)| <125

for all x eRR.
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