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Solutions and Stabilities of Some Equations
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ABSTRACT

We find the solutions and stabilities of two functional equations which are a generalized
version of Davison functional equation, i.e.,

and

where  and  is a constant.

Keywords: functional equation, Davison functional equation, stability

Department of Mathematics, Faculty of Science, Kasetsart University
*Corresponding author, e-mail: kalamung05@hotmail.com



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 30 ©∫—∫∑’Ë 1 (2557) 43

1. Introduction
In 1940, Ulam [1] introduced the following problem, which has since been referred

to as a çstabilityé problem: let f be a mapping from a group (G1,+) to a metric group (G2,+) with
metric d(.,.) such that

Do there exist a group homomorphism  and a constant  such that
 for all ? This means that if we change a bit of the functional

equation, then there is a little effect to its solution? In 1941, Hyers [2] proved that if 
is a function satisfying

for all x, y  E1, where E1 and E2 are Banach spaces and δ is a given positive number, then there
exists a unique additive function  such that

for all x  E1. If f is a real continuous function on  satisfying

it was shown by Hyers and Ulam that there exists a constant k such that

In 1980, T.M.K. Davison [3] introduced the functional equation

f(xy) + f(x + y) = f(xy + x) + f(y) (*)

in the 17th ISFE (Oberwolfach). During the meeting, W. Benz presented that every continuous
solution  of (*) for all is of the form f(x) = ax + b where a,b are real constants.
Next, in 1999, Jung and Sahoo [2] found the stability of (*) and its Pexider form:

f(xy) + g(x + y) = h(xy + x) + k(y). (**)
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In 2000, . Girgensohn and K. Lajkó [4] solved the general solution of (*) and (**) for

 and for , respectively.

In this paper, we propose the general solutions and stabilities of two functional equations which
are an extended version of (*). Those are the functional equations

f(xy) + mf(x + y) = f(xy + mx) + f(my) (1)

and

f(xy) + mf(x + y) = f(xy + mx) + mf(y) (2)

where  and .

2. Solutions
We find the solutions of (1) and (2), the results are

Theorem 2.1 For a fixed . The function  satisfies the functional

equation (1) for all  if and only if f is an additive function such that f(mx) = mf(x).

Proof. For a fixed . Suppose that f is an additive function such that f(mx) = mf(x).

Thus, we obtain

f(x,y) + mf(x + y) = f(xy) + f(mx + my)
= f(xy) + f(mx) + f(my)
= f(xy + mx) + f(my),

for all . So f satisfies (1).

Next, we show the çif parté of this theorem. Assume that  satisfies the functional

equation (1) for all .

Replacing y by y + m into (1), we get

f(xy + mx) + mf(x + y + m) = f(xy + 2mx) + f(my + m2). (2.1)

By adding (1) and (2.1), we have

f(xy) + mf(x + y) + mf(x + y + m) = f(my) + f(xy + 2mx) + f(my + m2).

From the above equation, we substitute x by x2 and y by 2y:

f(xy) + mf(x2 + 2y) + mf(x2 + 2y + m) = f(2my) + f(xy + mx) + f(2my + m2). (2.2)

Next, we subtract (1) from (2.2), that is, (2.2) › (1), to get
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mf(x2 + 2y) + mf(x2 + 2y + m) › mf(x + y) = f(2my) + f(2my + m2) › f(my).

Then, replacing x by x › y in the above equation, we get

mf(x2 + 
3y
2 ) + mf(x2 + 

3y
2  + m) › mf(x) = f(2my) + f(2my + m2) › f(my).

Replacing y by y3 in the last equation:

Now, it is of the pexider form:

A3(x + y) = A2(x) + A1(y)

where

(2.3)

A2(t) := mf(t), (2.4)

A3 
:= mf( t2) + mf( t2 + m). (2.5)

So there exists an additive function  and constants  such that

A1(x) = A(x) + d1, (2.6)

A2(x) = A(x) + d2, and (2.7)

A3(x) = A(x) + d1 + d2. (2.8)

From (2.4) and (2.7), we get

(2.9)

From (2.3) and (2.6), we have

 (2.10)
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Hence, from (2.9) and (2.10), we obtain that

(2.11)

From (2.5), (2.8) and (2.9), we get

(2.12)

Next, we substitute x by -m in (2.11):

mA(›m) + md1 = d2

m(›A(m) + d1) = d2.

By (2.12), we obtain
md2 = d2

(m›1)d2 = 0.

Since m ≠ 1, so

d2 = 0. (2.13)

And replacing x by 0 in (2.11), we have



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 30 ©∫—∫∑’Ë 1 (2557) 47

From (2.12) and (2.13), so

mA(m) = A(m2). (2.14)

By using (2.11), (2.12), (2.13) and (2.14), we obtain that

So, by (2.9), we get

where  is an additive function such that

f(mx) =    A(mx) =      mA(x) = A(x) = mf(x)1
m

1
m , i.e., f is an additive function where f(mx) = mf(x).

Theorem 2.2 For a fixed . If the function  satisfies the functional

equation (2) for all  , then f is of the form

f(x) = A(x) + b

where  is an additive function and b  is a constant.

Proof. Suppose that  satisfies the functional equation (2) for all . First,
we substitute y by y + m in (2):

f(xy + mx) + mf(x + y + m) = f(xy + 2mx) + mf(y + m). (2.15)

By adding (2) and (2.15), we have

f(xy) + mf(x + y) + mf(x + y + m) = mf(y) + f(xy + 2mx) + mf(y + m).

Replacing x by x2 and y by 2y in the last equation, we get

f(xy) + mf(x2 + 2y) + mf(x2 + 2y + m) = mf(2y) + f(xy + mx) + mf(2y + m). (2.16)

From (2) and (2.16), we get
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mf(x2 + 2y) + mf(x2 + 2y + m) › mf(x + y) = mf(2y) + mf(2y + m) › mf(y)

f(x2 + 2y) + f(x2 + 2y + m) › f(x + y) = f(2y) + f(2y + m) › f(y).

Next, replacing x by x › y :

By substituting y by y3 in the above equation, we obtain

We see that the above equation is of the pexider form

A3(x + y) = A2(x) + A1(y)

where

So the general solutions are

A1(t):= A(t) + a,

A2(t):= A(t) + b and

A3(t): = A(t) + a + b

where  is an additive function and a,b are constants. So

f(x) = A(x) + b

3. Stabilities

In this section, we consider the stabilities of (1) and (2) with new condition, i.e.,
m is a nonzero real number. The results are stated below.

Theorem 3.1 For a fixed m, δ  with m ≠ 0 and δ > 0. If the function  satisfies the
inequality
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| f(xy) + mf(x + y) › f(xy + mx) › f(my)| ≤ δ (3.1)

for all , then there exists a unique additive function  such that

for all x .

Proof. First, we replace y by y + m in (3.1):

| f(xy + mx) + mf(x + y + m) › f(xy + 2mx) › f(my + m2)| ≤ δ. (3.2)

By adding (3.1) and (3.2), we get

Replacing x by x2 and y by 2y in the above inequality, we obtain

                (3.3)

From (3.1) and (3.3), we get

Replacing x by x › y in the above inequality, we have
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Letting y by y3, we obtain

(3.4)

Next, we let  define by

(3.5)

From (3.4) and (3.5), we get

(3.6)

Replacing y by 0 in (3.6), we obtain

(3.7)

Similarly, we replace x by 0 in (3.6), we have that

(3.8)

Next, we define

(3.9)

By using (3.6), (3.7), (3.8) and (3.9), we have

(3.10)

Now using Hyers theorem [2], we get that

(3.11)

where  is a unh§µe additive function such that  By (3.7), (3.9)
and (3.10), we have
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Thus, we obtain

for all 

Theorem 3.2 For a fixed with m ≠ 0 and δ > 0. If the function  satisfies
the inequality

(3.12)

then there exists a unique additive function  such that

for all .

Proof. First, we substitute y by y + m in (3.12):

(3.13)

By adding (3.12) and (3.13), we get

Replacing x by x2 and y by 2y in the above inequality, we get

(3.14)
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From (3.12) and (3.14), we have that

So we get

From the last inequality, we replace x by x › y to get

And then substitute y by y3:

(3.15)

Next, we define the function  by

(3.16)

From (3.15) and (3.16), we get

(3.17)

From (3.17), we substitute y by 0 and x by 0 respectively to get

 (3.18)
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and

 (3.19)

Next, we define

(3.20)

Using (3.17), (3.18), (3.19) and (3.20), we obtain

By Hyers theorem [2], we obtain

(3.21)

where  is a unique additive function such that  Now using
(3.18), (3.20) and (3.21), we obtain

for all x .

From Theorem 3.1 and Theorem 3.2, if we let m = 1, then we obtain the result of
Jung and Sahoo [2]:

Corollary 3.3 If the function  satisfies the inequality

for all , then there exists a unique additive function  such that

for all x .
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