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Quasinormal Modes of the Reissner-Nordstrom Black
Holes with the Sectional Curvature, k = ›1, 0 and
1, in the 5-Dimensional Anti de Sitter Spacetime
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ABSTRACT

Quasinormal modes of the Reissner-Nordstrom black hole in 5-dimensional AdS
spacetimes are analytically calculated. The black holes are perturbed by a charged and massive
scalar field. The scalar field charge is coupled to the Maxwell field from the black holes.
We vary the sectional curvature as k = -1, 0 and 1. The results are similar to those in [5, 6],
for 4-dimensional cases. We also approximate some small-value terms at the infinity to check
the error from the analytical approximation. The higher value number n of quasinormal modes
and their frequencies, the leaser error-value numbers are found.
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Introduction
Black holes recently have in become an intense field of research. Thanks to the

correspondence between the Anti de Sitter spacetime and conformal field theory(AdS/CFT) [1].
Black holes are the regions that the gravitational force is so strong that even light could not
escape. Black holes evolve from massive stars with their masses after the supernova 1.4 bigger
than the sun mass. These massive stars after the supernova cannot withstand their own
gravitational attraction and collapse within. The strong gravitational force causes the highly
curved spacetimes in small regions. The surface that even light cannot escape is called the
event horizon. All the particles or waves that enter into the black holes are smashed into
microscopic particles and flow to the singularity inside. To describe the black hole phenomena
one would need a theory that works both in the curved spacetimes and in the microscopic
region (quantum theory).

The AdS/CFT correspondence has stated that the general relativity in n+1
dimensional AdS spacetime has the same physics as that in the conformal field theory on the
n-dimensional surface of the system [1]. The correspondence has offered a chance to study a
quantum theory on n dimensions through the n+1 dimensional AdS spacetime [2].

Perturbation of black holes in many literatures, e.g. [3], has revealed their phase
transition from one kind of a black hole to another kind by changing some parameters.
From AdS/CFT, the black hole phase transition is corresponding to the quantum phase transition
in many quantum systems, [4].

In [5], the 4-dimensional AdS Reissner-Nordstrom black holes, perturbed by a charged
and massive scalar field, are studied numerically, whereas the sectional curvature is zero (k=0).
The scalar field charge is coupled to the Maxwell field from the black hole. This study has
showed the sign of the black hole phase transition.

In [6], quasinormal modes of the black holes in [5] are analytically calculated and
compared, where its results are in agreement with those in [5]. Quasinormal modes are the wave
solutions to the Einsteinûs equations, which satisfy the boundary conditions, i.e. only ingoing
wave at the horizon and a finite wave at the infinity (for AdS spacetimes). In [7], the analytical
methods in [6] has been taken to calculate the quasinormal modes of the 5 dimensional black
holes similar to [5, 6] (k=0). In this work, we continue to calculate quasinormal modes but for
the sectional curvature is ›1, 0 and 1 (k=›1, 0, 1). We also approximate the error terms that have
been thrown away when perform the analytical calculation.
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Methods
We start from the Lagrangian of this system [5]

(1)

Where R is the scalar curvature. L is the Anti de Sitter radius.  is the Maxwell
field in d dimensions.  is the Maxwell potential in d dimensions. In this work we simplify the
potential as , where  is the electric potential due to the black hole charge Q in
the coordinate rested relative to the non-rotating black holes. q and m is the charge and mass
of the scalar potential . The term 
presents the electromagnetic interaction between the black hole and the scalar field The metric
tensor  of AdS spacetime is

(2)

where

(3)

f(r) is a function of one variable, radius, r. k is the sectional curvature. In this paper we let
k = ›1, 0, 1, which represent the spacetime geometry symmetry as hyperbolic, flat and spherical.
M and Q are the black hole mass and change respectively. hij is the metric of the angle parts i,
j = 2, 3, 4 for d = 5.

The action in this d-dimensional system is

(4)

› g  is the square root of the metric determent. To the study the perturbation of the scale fiel
d  in this black hole system, one can vary the action with the scale field  to obtain the wave
equation of the scale field , i.e.

(5)

meff
2  is the effective mass.

(6)
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In this paper the electric potential in d dimensions when  = 0 is [5], in order to simplify
our approximation,

(7)

For d=5,  is the outer horizon of the black hole, which is a

solution to eq (3) f(r) = 0. There are six solutions, ±r+ ±r2 and ±r3 where r+ is the largest real
positive number among the six solutions.

To solve the wave equation eq(5), one can separate the scalar potential as

(8)

S(xi) is a harmonic function of the angles xi, which is satisfied the eigen equation

(9)

λ2 is an eigen value of the harmonic function S(xi), [5]. For the spherical case λ2 = l(l+d-3),

(l = 0,1,2,3,...). ω is the frequency of the scalar filed 
After substitute eq (8) into eq (5) and apply eq(9) to eliminate the angle variables,

one would obtain an ordinary differential equation with the variable radius, r,

(10)

where

  (11)

Let change the variable radius r to z and define new parameters, z2 and z3

(12)

The range of variable radius r+ < r < ∞, then the range of the variable changes to 0 < z < 1. r+ is

satisfied a constrain equation 1 › +
8Mr+

2

Q2 + = 0.
4r+

2k

Q2

4r+
6

L2Q2  z2 and z3 are equal to
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(13)

Let us change the variable r to z in function f(r) → f(z), f = (z›1)(z›z2)(z›z3).
Q2

4r+
4z

 At z = 1 (at the

horizon), f(z = 1) = 0, the potential V(r) eq (10) is zero, V(r = r+) = 0 The behavior of
the scalar field  at the horizon can be approximated from the wave equation eq (10) by
defining a new variable as dr* 

= dr/f(r). Therefore at the horizon from eq (10), the wave equation
is reduced to

(14)

The solution to equation eq (14) is simply R(r*) = e±iωr*, where

(15)

and

(16)

This means that the behavior of the solution R(r) at the horizon is of the form 
with

(17)
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The boundary condition at the horizon is the only ingoing into the black hole allowed,

corresponding to the negative sign of  The behavior of the

solution at  and  are  and  respectively, with

   (18)

To solve the wave equation eq(10), let change variable r to z in the wave equation eq(10)

       

 (19)

And let us write down the solution to eq (19) form as

(20)

where

(21)

After substitute the solution R(z) from eq (20) into eq (19) and divide the equation by the
term  and after some algebra with the property of
α0, α1, α2, α3, one would obtain
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(22)

where

(23)

Next divide eq (22) with the term (Z-Z2)(Z-Z3)

(24)
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Let us approximate the eq (24) near the horizon, z = 1,

(25)

where

  (26)

We want to find the solution near the horizon then introduce a new variable y = 1-z

(27)

The two solutions to eq (27) are hypergeometric functions, in this case

 and (28)

At Z = 1, the function R(z) is approximated as

 and 
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However from the boundary condition at the horizon, we choose  and the solution is

(29)

The other boundary condition is the solution has to be finite at the far away zone, i.e. r → ∞

 From the property of hypergeometric function, the function

can be transformed from y = 0 to y = 1 or z = 0

(30)

where  and 

as z → 0 one would obtain and  → 0. The second term in eq (30) is diverged. To eliminate
this divergence one can set the parameter a = ›n or/and b = ›n, where n is an integer number
(n=0,1,2,3,..). therefore

 or/and (31)

or (32)

The frequency ω can be solved from eq (32) by using, the parameters α1, α2 and α3. from
eq (17) and eq (18). One can rewrite eq (32) in a form of a′ω2 + c′ = 0, where
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Therefore the frequency is

(34)

An example for the parameters k = 0, λ = 0, L = 1.1, r, = 1, Q = 1, m2L2 = 4, q = 0, n = 0
the frequencies are

ω = 4.53 - 4.55i and ω = -0.46- 2.66i (35)

From the boundary conditions, i.e. only the ingoing wave at the horizon and the non-diverged
wave in the far away zone, this allows only the frequency in (35), ω = 4.53 - 4.55i.

Results
The frequencies of the various parameters are plotted, e.g., k = 0, q = 0, q = 1,

n = 0,1,2,..., 10 λ = 0, L = 1.1 r, = 1, Q = 1, m2L2 = 4

(33)
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Figure 1 the real and imaginary parts of the frequencies are plotted on horizontal and vertical
axes respectively.  and  represent q = 0 and q = 1 respectively. Each value of
q represents n=0 to 10 values

From figure 1 both cases, q = 0 and q = 1 the differences of the frequencies between
each n are equal spacing, i.e., ∆Re(ω) = 3.00 and ∆Im(ω) = 1.87

The frequencies of the various parameters are plotted, e.g., k = -1, q = 0, q = 1,

n = 0,1,2,..., 10, λ = 0, L = 1.1 r+ = 1, Q = 1, m2L2 = 4
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Figure 2 the real and imaginary parts of the frequencies are plotted on horizontal and vertical
axes respectively.  and  represent q = 0 and q = 1 respectively. Each value of
q represents n = 0 to 10 values

2 3 4

2. 0

1. 5

1. 0

 0.5



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 29 ©∫—∫∑’Ë 2 (2556) 171

From figure 1 both cases, q = 0 and q = 1 the differences of the frequencies between
each n are equal spacing, i.e., ∆Re(ω) = 0.36 and ∆Im(ω) = 0.21

The frequencies of the various parameters are plotted, e.g., k = 1, q = 0, q = 1,

n = 0,1,2,..., 10, λ = 0, L = 1.1 r+ = 1, Q = 1, m2L2 = 4

Figure 3 the real and imaginary parts of the frequencies are plotted on horizontal and vertical
axes respectively.  and  represent q = 0 and q = 1 respectively. Each value of q
represents n = 0 to 10 values

From figure 1 both cases, q = 0 and q = 1 the differences of the frequencies between
each n are equal spacing, i.e., ∆Re(ω) = 5.06 and ∆Im(ω) = 0.34

Eq(27) is an approximation from eq(22). The term that have been thrown away is

(36)

For k = 0, q = 0, λ = 0, L = 1.1 r+ = 1, Q = 1, m2L2 = 4 the error is approximated n = 1 to 10 as
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Table 1 the error from eq(36) at the far away zone, z = 0, is showed for the parameters  k = 0,
q = 0, λ = 0, L = 1.1 r+ = 1, Q = 1, m2L2 = 4, and the integer n runs from 1 to 10

n Error from eq (36) n Error from eq (36)

1 2.45-i2.40 6 0.05+i0.20

2 -0.34-i2.25 7 0.01-i0.1

3 -1.00-i0.43 8 -0.0014-i0.0038

4 -0.35+i0.26 9 -0.001-i0.00007

5 0.02+i0.15 10 -0.0001+i0.0002

Conclusion and Discussion
Our work both the quasinormal modes and their frequencies are similar to those in

[5, 6]. That is a discrete set of frequencies which increases proportionally with the integer
number n. In this work we also found that the error of the analytic approximation becomes more
reliable when the higher value of n. One can further reduce such the error by performing
perturbation where taking our approximated method as the zero-order perturbation and going on
collecting all those terms in eq (36) as the first-order perturbation and so on. The quasinormal
modes and their frequencies present the states and energy levels of the perturbing wave or
particles in this case, the scalar field  in which the black holes allow to exist.
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