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ABSTRACT
We derive the upper bound for the exact ground-state energy involving a single

power of the number of electrons in matter, N. The bound is based on the following construction.
We consider the N electrons localized in k non-overlapping ordered squares size 2L Ó 2L,
with the k nuclei placed at the centers of each square area with appropriate choices of trial
wavefunctions for the N electrons.
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1. Introduction
Undoubtedly, one of the most important and serious problems that quantum physics

has faced over the years, since its birth over a three-quarter of a century ago, is that of the
stability of matter. This is of consistently demonstrating as to why matter in our world consisting
of a large number of electrons, in spite of their mutual repulsions, but with increasing attractions
to its nuclei, as their number increase, and continuously accelerating around them, does not
eventually lead to its collapse, as expected on classical grounds, and a perfect balance between
these phenomenae occurs and matter remains stable. The so-called Pauli exclusion principle
turns out to be not only sufficient for stability but also necessary. That is, if one invokes
the exclusion principle then stability may be established.

The relevant papers which led to modern developments of the fundamental problem
of stability were due to Dyson and Lenard [1, 2], Leib and Thirring [3], Leib [4, 5], Manoukian
and Sirininlakul [6, 7, 8], Sripirom Sirininlakul and Sirininlakul [9], covering essentially the
history of which is relevant to the problem of the stability of matter. In addition to the earlier
investigations of Dyson and Lenard mentioned above, the contribution of Leib and Thirring [1]
has embodied the central result of this problem, in which they bound the ground-state energy
from below, as Dyson and Lenard, by a single power of N (the number of electrons in a piece
of matter) multiplied by a negative constant whose magnitude is much smaller than that
found by Dyson and Lenard. It is expected that an ultimate treatment of stability of matter should
involve the full machinery of quantum electrodynamics [10]. Thus the actual demonstration of a
single power of N for matter is essential.

The Hamiltonian under consideration for the stability of matter is taken to be the
N › electron one

(1)

where m denotes the mass of the electron and the xi, Rj correspond, respectively, to positions of
the electrons and nuclei. Also we consider neutral matter, i.e.,

(2)

The Hamiltonian in (1) is a typical one in that it corresponds to motionless
(i.e., infinitely massive) fixed point-like nuclei. This is non-academic. By doing so, one does
not dwell on the fate and the dynamics of the positive background, and one is looking at, and
monitoring the fate of, the electrons through the çeyeé of the former system. The key result in
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the problem of the stability of matter, with the exclusion principle, is the single power
law behaviour › EN / N of the ground-state energy, and the physically expected result that the
ground-state energy per electron |EN / N| remains bounded for all N

The purpose of this paper is to carry a mathematically rigorous analysis of the
problem of stability of matter in area (two dimensions) by involving, in the process, the
fundamental Pauli exclusion principle which, as mentioned above, has far reaching consequences
in nature relevant directly to our world.

2. Upper Bound for the Ground-State Energy of Matter
We consider the anti-symmetric normalized functions Ψ (x1σ1,...,xNσN) of N electrons,

we then have for the expectation value of the Hamiltonian H in (1)

(3)

To derive an upper bound to this expectation value, we recall the definition of
electron density

(4)

normalized to 

A quick and rather conservative upper bound for EN may be derived by considering the following
determinantal function

(5)

( j, k = 1,..., N), where

(6)

with normalized spin functions χj (σ), which for simplicity may be taken to be all the same, and

 (7)
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i = 1,2, and is zero otherwise, x = (x1, x2). We choose the vectors L(1),...,L(k) as follows

 (8)

and we may choose

3L ≤ D. (9)

It is easy to see that the intervals : { jD › L ≤ xi ≤ jD + L }, for j = 1,...,k, are disjoint, for each i = 1,2,
and the functions ϕ (x›L(j)) are then non-overlapping, and orthogonal with respect to each of the
components xi of x.

We choose

Rj = L(j),  j = 1,...,k. (10)

The above construction (Figure 1) consists of conveniently placing the k nuclei at L(1),...,L(k) and
one electron in each one of the k squares with centers at L(1),...,L(k). One electron is also placed
in each of the remaining (N › k) nuclei-free squares with center at L(k+1),...,L(N). Because the
Coulomb potential is of long range, the interactions occur between particles in the different
squares as well.
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Figure 1 The construction of non-overlapping k squares align in direction (1,1)
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Due to the localizations of the functions ϕj(x,σ), as described above, the electrons are
well separated, and we may write

 (11)

and bound the repulsive e › e interaction term as

(12)

From (10), (8), |Ri › Rj| ≥ D for i ≠ j, then we have the inequality

(13)

Finally, we use the conservative bound

(14)

to obtain

(15)

The kinetic energy part is explicitly given by

(16)

and
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(17)

Since |x| ≤ 2  L in the latter integral.

All told, we obtain

(18)

Optimization over L gives

(19)

and leads to the bound

(20)

We may choose D large enough to make the second term as small as we please in
comparison to the first one to obtain

(21)

Since Ψ does not necessarily coincide with the ground-state wavefunction, and the
configuration positions of the nuclei does not necessarily correspond to the lowest possible
energy, (21) leads to an upper bound for EN:

(22)

with the upper bound having the single power of N.
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Conclusion and Discussion
From the main result of this paper, (22), it leads to the conclusion that necessity for

fermionic matter, the rigorous upper bound for the exact ground state energy types with Coulomb
interactions in two dimensions with fixed positive charges depend on a single power of N, the
number of electrons in matter. If we combine this upper bound with the lower bound of ground
state energy which is derived by [9], we obtain ›clowerN ≤ EN ≤ ›cupperN where clower, cupper are
constant. This bounds give the range of the ground state energy of fermionic matter which
makes the system stable.
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