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Basic Calculations of Ground-State Energy
of Two Dimensional Fermionic Matter Consisting

of One and Two Hydrogen Atoms

Siri Sirininlakul”

ABSTRACT

The basic calculations of the ground-state energy of two dimensional fermionic
matter consisting of hydrogen atom have been shown by considering the determinantal
function with normalized wavefunction and normalized spin functions. Two ground-state

energies are derived. The exact ground-state energy, based on considering the one hydrogen

3me*
atom wave function in the ground-state under Coulomb interaction in two dimensions, is _[—th ] :

The upper bound of the ground-state energy, based on considering 2 hydrogen atoms with

infinitely separated 2 clusters, each in its ground-state, with nuclear charges each having one
) 3me*
electron, is —2 Sn |
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1. Introduction

During the recent years, there has been much interest in two dimensional physics, e.g.
[1,2], and the role of spin and statistics theorem to investigate the nature of matter in two
dimensions relevant with the exclusion principle. E. B. Manoukian, C. Muthaporn [3] have
shown in 2004 that the upper bound for the ground-state energy of bosonic matter, by using trial
wavefunction, depend on —-N°, Ey < —~C,N” when C,, s positive constant. In 2010, K. Shiwongsa,
S. Sirininlakul and P. Sripirom [4] have shown that the lower bound for the ground-state energy
of bosonic matter in two dimensions is same depend on -N°, Ey > —C,N” which -C, <-C,,. P.S.
Sirininlakul and S. Sirininlakul [5] have shown in 2012, that the lower bound for the ground-
state energy of fermionic matter with the exclusion principle, by using the density, depend on
single power N, E, < N. We hope that in the future one can find the upper bound on the ground-
state energy of matter with the exclusion principle in two dimensions. So that, the purpose of this
article is to provide the guideline and useful information by carrying a mathematically rigorous
analysis of ground-state energy problem of two dimensionnal fermionic matter consisting one
and two hydrogen atoms, by invoking, in the process, the fundamental Pauli exclusion principle
which, as mentioned above, has far reaching consequences in nature relevant directly to

our world. We provide basic estimates involving the upper bounds for the exact ground-state

. . . 1
energy, corresponding to the Hamiltonian (by setting e 1)
0

. p_2 K 2 ‘ Zi Zjez Nk Zjez
H=)* -
;2m+; X,-—X;f|+; Li_Lj ;;|X"_L~f (1)

where Z; and Z] are number of protons in nucleus of hydrogen atom i and j, k is number of
nucleus, N is number of electrons in the system and L, Lj are vectors in two dimensions from

the origin to nucleus Z ‘e| and ZJ ‘e‘ localization,
L, =Ly, (2)
L-L;, =L, =Lymn-n,,), (3)

where L, 1S a constant, n, n,  are unit vectors and
L= 1, )

For fermionic matter, the anti-symmetric two dimensional wavefunction in ground-

state be writen as the determinantal function

‘I’(xla,,...,xA\,GN)zﬁdet[(//j (x,a)] (5)
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X; is two dimensions vector from the origin to the it electron, v j(x, o)=y ;( x)x ( o) and x( o) is

spin functions. Each orbital occurring in (5) is product of an anti-symmetric spat1al state y(x),
and a symmetric spin state (o). Since orbitals of different spin are automatically orthogonal, Eq.
(5) reduces to the condition that space orbitals corresponding to the same spin function should be

orthonormal. This assures that the normalization conditions are

J.dle,d2x2,...,d2xi\, |‘P(x,o-,,x202,...,xj\,O'N )|2 =1 (6)

sy

and
Z:zf(a)zj(a)=5,~,~- (7)

We choose to consider the matter consisting hydrogen atoms because it is easy to

obtain its wavefunction and we obtain k= N.

2. Two dimensional fermionic matter consisting one hydrogen atom
In this case, k has chosen to be 1. Let w(x,-L,) be the spatial state one hydrogen
atom wavefunctions in ground-state and derived by using method of separation [7], we obtain

two dimensions wavefunction of one hydrogen atom is

¥(x,,0,)=y(x,~L)x(0)= \Eﬁe'ﬁ"‘ M 0) (8)
where
me’
ﬁ - hz (9)

2

and - is the Bohr radius -
me

For one hydrogen atom, we can ignore the second and the third terms in the right-

hand side of (1), and obtain the expectation value of the Hamiltonian H for a hydrogen atom :
p
(Pla]?)=(P|-|¥)- <“P|| ||“P> (10)
To obtain (¥|H|¥), we introduce the expectation value of kinetic energy as :

(v | |\{’ __jd2 (V¥ (x,.0)))- (V¥ (x,,0))) (11)

where
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V=f3+éli, (12)
or r oo
[axw(x) = ij”rdrde ¥(r,0) (13)

and the expectation value of the potential as

<‘I’||X =y ||‘P jdzx b (XI,O'I)| I_L]|‘~If(x1,0'|) (14)

2.1 The expectation value of kinetic energy for k=1
To obtain the expectation value of kinetic energy of (10), we substitute (8) into

(11) and let r =x,-L; and |t = r to obtain

(¥ | |‘I’> np Idz (V e ﬁlrl) (V e’ﬁ‘rl)
:h—,;% [ [Fardo e

2h2ﬁ4 . —2pr
= 7 J;’d}" re

(15)
Now let u =2, the integral term on the right-hand side of (15) can be rewritten as
ys 0 w1
J:drre o = dere =
1
= (16)

43

In order to obtain the expectation value of kinetic energy of one hydrogen atom in two

dimensions, substitute (16) into the right-hand side of (15),

(¥| 2wy "2 (17)

2m

Noting that the kinetic energy in two dimensions from (17) is the same value with kinetic energy
in three dimensions. So the kinetic energy of one hydrogen does not change even the dimension
is changed [6].
2.2 The expectation value of nucleus-electron interaction
To obtain the expectation value of nucleus-electron interaction of one hydrogen
atom in two dimensions, we substitute (16) into the second term on right-hand side of (15),

then the expectation value is expressed as
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— L - g2 \/z AL AL
<lP||x,—Ll||lP>_ € Id X, ﬂ_ﬂe ‘x —L‘ ,B

=_262ﬂ2 J'dzx 672ﬂ|x]7L| (18)
T : |xl —Ll| '

Let D=x,-L,, and |D| = D, we get d°D = d%x, (L, is constant vector), then substitute them into
the right-hand side of (18) to obtain

2e ,3 J' 2ﬁ|n -Ly| 262,32 J.dzDe-z/ﬂD\
|xl L, T |D|

19
=-2¢'p. (19)
2.3 The exact ground-state energy of two dimensional one hydrogen atom
Substituting (17) and (19) into the right-hand side of (10), we have
hZ ﬂz )
YIH|Y)=——=-2ep.
(¥|H|¥)=="--25 (20)

With g defined as in (9), we obtain the following for the ground-state energy of a hydrogen

atom as

(|| w)= 2 22 (e
2m\ B n
4

__3me (21)
2h?

as expected.
3. Two dimensional fermionic matter consisting two hydrogen atoms

For two hydrogen atoms, we put number of nucleus k = 2 and number of electron

N =2 the ground-state energy of two hydrogen atoms is formulated as

(1) (e ) (e S5 kA OIS Y e

i Jj=1 |X-

where the anti-symmetric wave function for k = 2 is defined
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\P(xlo']’xzo-z):Ll//l(XHG]) l//l(x2so-2)

\/EV/Z(XI’O.I) ‘//z(xzvo'z)
which can be rewritten as
‘I’(XIGI,X2O'2 \/—[‘//1 Xl’o-] v, (Xz’gz) v, (XI’O-I)'//I (x290-2):| (24)

Substituting the two dimensional hydrogen atom wavefunction into (24) yields the two

dimensional anti-symmetric wavefunction as
\/E : —p|x,— —px,— —B|x— —Bx,—
)= ﬁﬂ [e Il el (o) o (o) —e e My (o) 2 (o )} (25)

¥ (x,0,,%,0,

3.1 The expectation value of kinetic energy for k=2

To obtain the expectation value of kinetic energy, we introduce
(P 2Ly = (|7 ) = I [, (v, )(7,9), (262)
2m 2m
P " '
B =(PIEI) =5 o n () (79), o0

and from (12), for no ¢ dependence and §-% =0, gives

0 A1 0
V(}’I,Q)zr]a—rl+97]£, (27a)
0 ~1 0
V(r,,0)="r +0——.
(0 =h g0 50 (27b)

Substituting (25) into (26), to obtain

(el |‘P>

{deX Veﬂ|"| -Ly| Ve Blx L|+jd2xveﬂ|xl Ly| Ve‘ﬂhl Ly|

T e T e e e I

2m7r

where

0, =1 (29a)

2
(2 o -
2X2 _ﬂe Blxy Ly
a
2 2
X, || =pe el g,
T

= 1. (29Db)
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To evaluate the integral term in (28), by setting R; = x,-L, we consider in two cases :
Firstly, if L =L":

pame%ﬂvpm”=ﬁfﬁ%&w&#“=§ (30)

Secondly, if L # L

-Blx;— A Al —p[r2 =21, Lcos O+ 17 —L 0)¢  Lsi ) -Blx;—
Ve A, L|:(r;§+9:i]e 7 2L cos0 1 :_ﬂ{(”, cos )r+ sm@&}e Pl

20 -1 [x-L] (31)
From (31), we replace L by L’ to obtain
L _['cos@)F L'sin08 | v
VA T (r " AL
i© ﬁ{ X _Lr| |xi _Lr| ¢ (32)

By using (31) and (32) it follows that

J‘dzx.V.e’ﬂl""Ll 'V.eiﬁ‘x'iul _ ﬁz Idzx. |:XI_ -(XI. —L)X'. .(X’. —L’) LL'sin@sin 0 :|eﬂx’Leﬂx’L’|.

r,z x,—L”x,.—L' x,—L”x,.—L'
2 (424 a AL Ax L], 52 [42 LL' B LBl -L]
<pB Id X,€ e +B Jd X, N Lk 1 1 _L,|e e (33)
where
x,-(x,-L)< |x,.| x, —L| (34a)
LL sin 6 sin 0 < LL'. (34b)

To evaluate the first integrals on the right hand side of inequality (33), let L,=L’-L,
x-L =R, and dzxi = d2(Ri+L) = dQRi, substituting all into the right-hand side of (33) to obtain

P —p-L] L 1L
2 [x e M He MM < oppPe il D0y gl | 20
p e, A e by (35)
where
IR, ~L,| =R -2R, - L+ 12 >\|R* 2R L+ 1} (36a)
o ARl < o AlR~ko| (36b)

Consider the second term on the right-hand side of (33), let x,-L =R, and
d*x; = @*(R+L) = d°R,, then using (36), to obtain
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LL'e-ﬂ|xl—L| e_ﬂlxr_Ll LL'e—,’J’R, e-ﬂ|R,-Lo|

? |d%x, < B’ |d°R,
B Jax [, —L|Jx,~ L] PR, RIR —L,| (37)
By nothing the expansion in term of Legendre polynomials [8]
1 o(R.) 1
———— =32 | —P(cosO
|Ri_LO| g[R»j Ri> /(COS ) (38)
and
~L27[d491’[(cos 0)=27r5,, (39)

where R;=max[L,, R] and P (cos 6) = 1.
Substituting (39) into the right-hand side of inequality (37), we obtain

et kL]

|xl. - L||x,. - L'|

L . RLLeRe Rl o e (R Y1
B [d’x, < pﬂjo" AR = [Ta0Y | R(eosO) (40)
i (=0 i> i>

Applying (38), with ¢ =0, to the right-hand side of inequality (40), we obtain the inequality

1 —Bx -1 —Blx,-L] 2 2LL1L ’
LLe e <( ALLL, 2BLL' g, )

2 dZ
d j * |x, —L||x, —L| 2 2
Substituting (35) and (41) into the right-hand side of inequality (33) yields

272 2 ’ ’
IdZXV ey ot copemn | Bl Lo Pl FLEL,  BLLT 1
i ! - 2 22 2 2 47 (42)

and

_[d2x,- (e_ﬁ"" = )(e_ﬁ“"u| ) <2xe M {%ﬁ + 2L—[°3 + 4;2 } (43)

Using (30) and noting (28), with i=1 and L, =L = L’, we have

J.dzx,VIe_ﬂlx' Ly gl 2 % (44)
Now, with i=2 and L, =L =L’, we also have

[yt y et < 2 (45)

Using (42) and (43), noting (28), with i=1, L, =L, and L, = L', it follows that
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2L L 2LL'L !
ZJ.dzx]Vlefﬁl“szl onefﬁlx‘fL'l <4zefh {—ﬂz 0 0y PLy + P 0 4 BLL +l} (46)

2 2 2 2 4
and with i=2, L, =L and L, = L', we obtain

jdle (e_ﬂlxz_w )(e_m‘Z_LZl ) <27ze {% +2L_,OB + 4,182 } (47)

Substituting (44), (45), (46) and (47) into the right-hand side of (28), then taking the

limit L — oo yields

(#] Py < 22 )

2m

Noting (26) and (28), then replacing V, by V, in the same way as (29) to (47), we obtain

(|2 m»shﬂ (49)

2m

From (48) and (49), we obtain the upper bound for the expectation value of kinetic

energy of hydrogen atom for k= N = 2 expressed as
Pl g - (| PL P
(P32 )= (| 2o s (v 2 )

< 2[h2ﬂ2j (50)

2m

3.2 The expectation value of nucleus-electron interaction for k = 2
To obtain the bound of nucleus-electron interaction, we choose L i be the vector
from the origin to the nuclei of charges Z] |e|. For Zj =1, k=2 and N =2, the second term on

the right-hand side of (22) gives

) (| ). (51)
(=)= 1)

Considering the first term on the right-hand side of the inequality (51), we obtain
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2
. 1
_<‘P|—|X e—L ||‘P>=—e2 Id2xld2xz vy (Xlal,xzaz)m\l’(xlal,xzaz)
1 1 1
2 92 2% -Ly| 2 2 —28|x;-L, |
__¢P szxle B szle
Vs |x —L| |x —L]|

(52)

\/_,5 \/_ﬁ J-d ﬂlxl L| /3||XIL|| J‘dzxze_ﬁlxz_Llle_ﬁlxz_w ]
I

To obtain the expectation value in (52), we introduce the basic following integral for L = L” and

set R = xl.—L

ﬂ‘x L| ﬁ'lx L|

) 272 R “2pR
farx, S - = [ [ drao= =% (53)

and for L=L’, let R, = x-L, x.-L"= R+L-L" and L, = L-L” we obtain

P L L] 2R+

, € e 5 €

farx, S = R S —
x, -] R

i

_ “2p1; “2/8R,
=2re " dei e

- %e*“ﬁ. (54)

The right hand side of inequality (54) is positive number and vanishes very rapidly for

L, — o, it obviously follows that

P

—J.dZXjWSO. (55)

In the other case for L =L’ let L,= L’-L, we obtain

¢ et
© k-

"R

Applying (36), to the right-hand side of (56), to obtain
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-Alx;-L| e—ﬁlx,—Ll e PR ~BIR,~Ly|

€
0 <27 [ dR R,

Idzxi c

i

=2z J;L“ dR e F 0 k) Lo f dR ¢ PR g hih)

P [L . } (57)
25

From (53), (55) and (57), we conclude that

—Zﬁlx L| P
— g2 =
T (58)
5 —Zﬂ|x, L|
~[d <0
[ax, my (58b)
g Ll skt o 5 1
xS < T 2B |
[d*x, S5 | (58¢)

Applying (58a), with i =1, L =L, and x; =x, to the first term on the right-hand

side of inequality (52), with normalized wavefunction, gives

—20x-Ly|

L =p (59)

2 02
ep j &x, e
[x, -
Again, applying the integration in (58b), set i=1, L=L,, L'=L, and x;, = x,, to the
second term on the right-hand side of inequality (52), with normalized wavefunction, we obtain

the following inequality

—2ﬁ|xw Lz|

_¢ ﬂ j <0. (60)

1

Now, applying (43), with i =2, L=L, L'= L, and x, = x,, to the third term on the right-hand
side of (52), we have

szx oLl ALl o, L_f) 1 +i
2 - 2 4ﬂ2 205 (61)

and using (58¢), with i =1, L=L, L= L, and x; = x,, as applied to the third term on the
right-hand side of (52), yields

~plxi- Lz ~plxi—Ly

T apr, 1
J.d Xy, —F——— I| _Ee A |:2ﬂLO +Ei| (62)
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Substituting of (61) and (62) into the third term on the right-hand side of (52) for L, — oo gives

2 p4 —Blx—Ls| =Alx —Ly]
fim [%ﬂf [arx, S szxzeﬁ"leleﬁIXszlj ~0. (63)

Ly |X] —L]|

By substituting (59), (60) and (63) into the right-hand side of (52), taking L — o,
it follows that

<lP||x] ||lP>— -’ p. (64)

Referring (52)-(63), by taking the L —> e the upper bounds of some terms on the
right-hand side of (51) are shown below

<‘P|| 2iL2||‘I’>§—e2ﬁ. (65)
—<‘P||X26_LI||‘I’>S—ezﬂ. (66)
(i Emsen )

Substituting (64), (65), (66) and (67) into the right-hand side of (51), we obtain the
following bound for the expectation value of the nucleus-electron interaction for two hydrogen

atoms as

-2 ¢ ‘|\P>s—4e2ﬂ. (68)

3.3 The expectation value of electron-electron interaction for k = 2
Considering the the third term on the right-hand side of (22), the expectation
value of electron-electron interaction for k = 2 hydrogen nuclei, we obtain

2
<‘I—’||X - ||‘I’ Idzx d? xz‘{’ (x,0,,X,0,) Y (x,0,,X,0,)
1 2

1
|x, _X2|

"l —Lw‘

-28|x,-L, |

- eﬂ [arx,e 2t ey, & 5, <L ax, et o, ©
T

|x -X | ‘x]—x2

2 2 *ﬂ|x|*Lz‘ *ﬂ"‘l*Ll‘
2 \/Eﬁ \/Eﬂ 2 B, -L| ALy [42.. © €
-0, e—TIdxze 2le 2_‘.dxl—.

|x| _X2|

(69)
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To evaluate (69), we introduce following variables : R = x-L, L, = L'-L, L, = L-L".
Firstly, for R"=x-L" we have

-2fx-L| “2/|R|

faix S—= [e'R——
[x—x| |IR—(R"+L,)|

=2z | dRRﬁe‘”"“

>

- 27 R’+LOdRRe'2ﬂR +27rr dRe™/*
R'+1L, ey
_ 2 1 _ e—2/)’(R’+L0) _ (R,+L())e_2ﬁ(R,+LO) +2_7[e—2ﬂ(R’+lﬂ) (70)
R+ L, 45 45° 2p8 2p
where
1 = (R 1
——— =) | = | — P(co0sb),
R -(R'+L,)| Z{RJ g0 (71a)
R =max(R,R'+L,), (71b)
deg(cos 0)=2r. (71c)
For L, — oo, the right-hand side of (70), can be rewritten as
—2fx-1
lim| [d?x$&—— |=o0.
Lﬁw[.[ x—x] ] (72)
which leads to
: 21 2px-L] [ 42 il
Jim | [d*x'e [d*x ) 0. (73)
Secondly, let R" = (x'-L) and A = x-L,
200 21 [ 42 e/t 200 2L (12127 e
J.dXC J‘dXW:IdXG J‘dR |R'—A| (74)

Considering the second integral on the right-hand side of (74) to obtain
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[aRr’ |R' J:dR R'e™ deZ( ] — P(cos)

R
_ / 4R’
= ZEJ:dR —,e

>

j dR' R'eP* +27[de' PR

272'( 1 efz’/;A Ae/ ]+2_7Te—2/},4

4" 4B 2B ) 2B
T2 L 27(e A
= e
246°  2p 45’ 2/
L7 : +2_ﬂ' 24 (75)
248° 28
We substitute A = |X—L| into the right-hand side of inequality (75), to get the inequality
—2AR]
deR/ ’e < _ VA +2_7Z'e—2ﬂ|x—L|' (76)
[R'—(x-L)| " 28*|x-L| 28
Let L= L-L’ so that L,= 76) lead to
: 2 2fx-L| T 2_72' 241 || _
Llolﬂ{jd e [2ﬁ2|x—L\ "¢ H_O (77)
and (77) can be rewritten as
. 2 —Zﬂlx - (52 ﬂl N
L101Lr10 Id x' J.d |x x| =0. (78)

To obtain the third term on the right-hand side of (69), by using the same method,

we choose L = L-L’ and by using the integral technique above, we obtain

ﬂ‘x L | |x L|

—_[d X—— <0. (79)

Using (43) and substituting (79) into the third term on right-hand side of inequality (69),

we have

_J‘d2 AL _~plx-L] J‘dz e PI-Llg-Ax-1] 0
X € (5] Xi_ p = U, (80)
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Noting (73), (78) and (80), let L, =L, L, = L’ x, =x and x, =X/, we obtain the expectation value

of electron-electron interaction for k = 2 hydrogen nuclei as

<‘P|Z

i<j

RS RS = o

3.4 Nucleus-nucleus interaction
To obtain the expectation value of nucleus-nucleus interaction for hydrogen

nuclei, let
L-L,=L, (82)

Substitution of above expression into the fourth term on the right-hand side of (22), gives us

>=;—O- (83)

From (83), for L, — e, the bound of the expectation value of nucleus-nucleus

interaction for two k = 2 hydrogen nucleies is

lim <‘~P|Z

Ly—o i<y

’|q’> = (84)

i

3.5 The upper bound
By referring to (22), (50), (68), (81), and (84), we obtain the upper bound for

the ground-state energy of two dimensional fermionic matter consisting two hydrogen atoms :

(| ] )= (¥ S 2

i=1

RSy ORI

i<j

4
3me
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4. Conclusion

We have seen that the exact ground-state energy with one hydrogen atom in two
dimensions can be computed, but the ground-state energy of fermionic matter with two hydrogen
atoms need to be bounded only. This is because of the exchanging term of wave function
overlabing. However in this article, we consider the case that there is no overlab of atom
(|Li —Lj| —> o). The results also share that the upper bound of the ground-state energy of

fermionic matter with two hydrogen atoms is less than two times of the ground-state energy

3 4
with one hydrogen [<‘P|H|\P> < _2( ;:;z j]
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