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Basic Calculations of Ground-State Energy
of Two Dimensional Fermionic Matter Consisting

of One and Two Hydrogen Atoms
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ABSTRACT

The basic calculations of the ground-state energy of two dimensional fermionic
matter consisting of hydrogen atom have been shown by considering the determinantal
function with normalized wavefunction and normalized spin functions. Two ground-state

energies are derived. The exact ground-state energy, based on considering the one hydrogen

atom wave function in the ground-state under Coulomb interaction in two dimensions, is 

The upper bound of the ground-state energy, based on considering 2 hydrogen atoms with

infinitely separated 2 clusters, each in its ground-state, with nuclear charges each having one

electron, is 
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1. Introduction
During the recent years, there has been much interest in two dimensional physics, e.g.

[1,2], and the role of spin and statistics theorem to investigate the nature of matter in two
dimensions relevant with the exclusion principle. E. B. Manoukian, C. Muthaporn [3] have
shown in 2004 that the upper bound for the ground-state energy of bosonic matter, by using trial
wavefunction, depend on ›N2, EN ≤ ›CHN

2 when CH
 is positive constant. In 2010, K. Shiwongsa,

S. Sirininlakul and P. Sripirom [4] have shown that the lower bound for the ground-state energy
of bosonic matter in two dimensions is same depend on ›N2, EN ≥ ›CLN

2 which ›CL < ›CH. P.S.
Sirininlakul and S. Sirininlakul [5] have shown in 2012, that the lower bound for the ground-
state energy of fermionic matter with the exclusion principle, by using the density, depend on
single power N, EN ∝ N. We hope that in the future one can find the upper bound on the ground-
state energy of matter with the exclusion principle in two dimensions. So that, the purpose of this
article is to provide the guideline and useful information by carrying a mathematically rigorous
analysis of ground-state energy problem of two dimensionnal fermionic matter consisting one
and two hydrogen atoms, by invoking, in the process, the fundamental Pauli exclusion principle
which, as mentioned above, has far reaching consequences in nature relevant directly to

our world. We provide basic estimates involving the upper bounds for the exact ground-state

energy, corresponding to the Hamiltonian (by setting  = 1)

(1)

where Zi and Zj are number of protons in nucleus of hydrogen atom i and j, k is number of
nucleus, N is number of electrons in the system and Li, Lj are vectors in two dimensions from
the origin to nucleus Zi e and Zj e localization,

Li = L0ni, (2)

Li›Li+1 = L0 = L0(ni›ni+1), (3)

where L0 is a constant, ni, ni+1 are unit vectors and

Li›Lj ≥ L0 (4)

For fermionic matter, the anti-symmetric two dimensional wavefunction in ground-
state be writen as the determinantal function

(5)



SWU Sci. J. Vol. 28 No. 1 (2012)150

xi is two dimensions vector from the origin to the ith electron, j(x, σ) = j(x)χj(σ) and χj(σ) is
spin functions. Each orbital occurring in (5) is product of an anti-symmetric spatial state (x),
and a symmetric spin state χ(σ). Since orbitals of different spin are automatically orthogonal, Eq.
(5) reduces to the condition that space orbitals corresponding to the same spin function should be
orthonormal. This assures that the normalization conditions are

(6)

and

(7)

We choose to consider the matter consisting hydrogen atoms because it is easy to
obtain its wavefunction and we obtain k = N.

2. Two dimensional fermionic matter consisting one hydrogen atom
In this case, k has chosen to be 1. Let (x1›L1) be the spatial state one hydrogen

atom wavefunctions in ground-state and derived by using method of separation [7], we obtain

two dimensions wavefunction of one hydrogen atom is

(8)

where

(9)

and  is the Bohr radius 

For one hydrogen atom, we can ignore the second and the third terms in the right-

hand side of (1), and obtain the expectation value of the Hamiltonian H for a hydrogen atom :

(10)

To obtain 〈Ψ|H|Ψ〉, we introduce the expectation value of kinetic energy as :

(11)

where
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(12)

and the expectation value of the potential as

(13)

(14)

2.1 The expectation value of kinetic energy for k = 1
To obtain the expectation value of kinetic energy of (10), we substitute (8) into

(11) and let r = x1›L1 and r = r to obtain

(15)

Now let u = 2 , the integral term on the right-hand side of (15) can be rewritten as

(16)

In order to obtain the expectation value of kinetic energy of one hydrogen atom in two
dimensions, substitute (16) into the right-hand side of (15),

(17)

Noting that the kinetic energy in two dimensions from (17) is the same value with kinetic energy
in three dimensions. So the kinetic energy of one hydrogen does not change even the dimension
is changed [6].

2.2 The expectation value of nucleus-electron interaction
To obtain the expectation value of nucleus-electron interaction of one hydrogen

atom in two dimensions, we substitute (16) into the second term on right-hand side of (15),
then the expectation value is expressed as
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(18)

Let D = x1›L1, and |D| = D, we get d2D = d2x1 (L1 is constant vector), then substitute them into
the right-hand side of (18) to obtain

(19)

2.3 The exact ground-state energy of two dimensional one hydrogen atom
Substituting (17) and (19) into the right-hand side of (10), we have

(20)

With  defined as in (9), we obtain the following for the ground-state energy of a hydrogen

atom as

(21)

as expected.

3. Two dimensional fermionic matter consisting two hydrogen atoms
For two hydrogen atoms, we put number of nucleus k = 2 and number of electron

N = 2 the ground-state energy of two hydrogen atoms is formulated as

(22)

where the anti-symmetric wave function for k = 2 is defined



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 28 ©∫—∫∑’Ë 1 (2555) 153

(23)

which can be rewritten as

(24)

Substituting the two dimensional hydrogen atom wavefunction into (24) yields the two
dimensional anti-symmetric wavefunction as

(25)

3.1 The expectation value of kinetic energy for k = 2
To obtain the expectation value of kinetic energy, we introduce

(26a)

(26b)

and from (12), for no φ dependence and  = 0, gives

(27a)

(27b)

Substituting (25) into (26), to obtain

 
(28)

where

(29a)

(29b)
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To evaluate the integral term in (28), by setting Ri = xi›L, we consider in two cases :
Firstly, if L = L′:

(30)

Secondly, if L ≠ L′:

(31)

From (31), we replace L by L′ to obtain

(32)

By using (31) and (32) it follows that

(33)

where

(34a)

LL′ sin θ sin θ ≤ LL′. (34b)

To evaluate the first integrals on the right hand side of inequality (33), let L0 = L′›L,
xi›L = Ri, and d

2xi = d2(Ri+L) = d2Ri, substituting all into the right-hand side of (33) to obtain

(35)

where

(36a)

(36b)

Consider the second term on the right-hand side of (33), let xi›L = Ri, and
d2xi = d2(Ri+L) = d2Ri, then using (36), to obtain
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(37)

By nothing the expansion in term of Legendre polynomials [8]

(38)

and

(39)

where Ri = max[L0, Ri] and P0(cos θ) = 1.
Substituting (39) into the right-hand side of inequality (37), we obtain

(40)

Applying (38), with  = 0, to the right-hand side of inequality (40), we obtain the inequality

(41)

Substituting (35) and (41) into the right-hand side of inequality (33) yields

(42)

and

(43)

Using (30) and noting (28), with i = 1 and L1 = L = L′, we have

(44)

Now, with i = 2 and L2 = L = L′, we also have

(45)

Using (42) and (43), noting (28), with i = 1, L1 = L, and L2 = L′, it follows that
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(46)

and with i = 2, L1 = L and L2 = L′, we obtain

(47)

Substituting (44), (45), (46) and (47) into the right-hand side of (28), then taking the
limit L0 → ∞ yields

(48)

Noting (26) and (28), then replacing ∇1 by ∇2 in the same way as (29) to (47), we obtain

(49)

From (48) and (49), we obtain the upper bound for the expectation value of kinetic
energy of hydrogen atom for k = N = 2 expressed as

(50)

3.2 The expectation value of nucleus-electron interaction for k = 2
To obtain the bound of nucleus-electron interaction, we choose Lj be the vector

from the origin to the nuclei of charges Zj e. For Zj = 1, k = 2 and N = 2, the second term on
the right-hand side of (22) gives

(51)

Considering the first term on the right-hand side of the inequality (51), we obtain
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(52)

To obtain the expectation value in (52), we introduce the basic following integral for L = L′ and
set R = xi›L

(53)

and for L ≠ L′, let Ri = xi›L, xi›L′ = Ri+L›L′ and L′
0  = L›L′ we obtain

(54)

The right hand side of inequality (54) is positive number and vanishes very rapidly for
L0 → ∞, it obviously follows that

(55)

In the other case for L ≠ L′ let L0 = L′›L, we obtain

(56)

Applying (36), to the right-hand side of (56), to obtain
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(57)

From (53), (55) and (57), we conclude that

(58a)

(58b)

(58c)

Applying (58a), with i = 1, L = L1 and xi = x1 to the first term on the right-hand
side of inequality (52), with normalized wavefunction, gives

(59)

Again, applying the integration in (58b), set i = 1, L = L1, L′ = L2 and xi = x1, to the
second term on the right-hand side of inequality (52), with normalized wavefunction, we obtain
the following inequality

(60)

Now, applying (43), with i = 2, L=L1, L′ = L2 and xi = x2, to the third term on the right-hand
side of (52), we have

(61)

and using (58c), with i = 1, L=L1, L′ = L2 and xi = x1, as applied to the third term on the
right-hand side of (52), yields

(62)
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Substituting of (61) and (62) into the third term on the right-hand side of (52) for L0 → ∞ gives

(63)

By substituting (59), (60) and (63) into the right-hand side of (52), taking L0 → ∞,
it follows that

(64)

Referring (52)›(63), by taking the L0 → ∞ the upper bounds of some terms on the
right-hand side of (51) are shown below

(65)

(66)

(67)

Substituting (64), (65), (66) and (67) into the right-hand side of (51), we obtain the
following bound for the expectation value of the nucleus-electron interaction for two hydrogen
atoms as

(68)

3.3 The expectation value of electron-electron interaction for k = 2
Considering the the third term on the right-hand side of (22), the expectation

value of electron-electron interaction for k = 2 hydrogen nuclei, we obtain

(69)
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To evaluate (69), we introduce following variables : R = x›L, L0 = L′›L, L′
0  = L›L′.

Firstly, for R′ = x′›L′ we have

(70)

where

(71a)

(71b)

(71c)

For L0 → ∞, the right-hand side of (70), can be rewritten as

(72)

which leads to

(73)

Secondly, let R′ = (x′›L) and A = x›L,

(74)

Considering the second integral on the right-hand side of (74) to obtain
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(75)

We substitute A = x›L into the right-hand side of inequality (75), to get the inequality

(76)

Let L0 = L›L′ so that L0 = L›L′, (76) lead to

(77)

and (77) can be rewritten as

(78)

To obtain the third term on the right-hand side of (69), by using the same method,
we choose L0 = L›L′ and by using the integral technique above, we obtain

(79)

Using (43) and substituting (79) into the third term on right-hand side of inequality (69),
we have

(80)
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Noting (73), (78) and (80), let L1 = L, L2 = L′, x1 = x and x2 = x′, we obtain the expectation value
of electron-electron interaction for k = 2 hydrogen nuclei as

(81)

3.4 Nucleus-nucleus interaction
To obtain the expectation value of nucleus-nucleus interaction for hydrogen

nuclei, let

L1›L2 = L0. (82)

Substitution of above expression into the fourth term on the right-hand side of (22), gives us

(83)

From (83), for L0 → ∞, the bound of the expectation value of nucleus-nucleus
interaction for two k = 2 hydrogen nucleies is

(84)

3.5 The upper bound
By referring to (22), (50), (68), (81), and (84), we obtain the upper bound for

the ground-state energy of two dimensional fermionic matter consisting two hydrogen atoms :

(85)
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4. Conclusion

We have seen that the exact ground-state energy with one hydrogen atom in two
dimensions can be computed, but the ground-state energy of fermionic matter with two hydrogen
atoms need to be bounded only. This is because of the exchanging term of wave function
overlabing. However in this article, we consider the case that there is no overlab of atom
(Li ›Lj → ∞). The results also share that the upper bound of the ground-state energy of

fermionic matter with two hydrogen atoms is less than two times of the ground-state energy

with one hydrogen 
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