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The Equivalence of Variational Inequality and Finite
Element Formulation of the Obstacle Problem

for a String
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ABSTRACT

The equivalence of variational inequality and finite element formulation of one
dimensional obstacle problem is observed thru the weightless elastic string which is displaced
by a body. This is a simple physical problem which will lead to the mathematical idea of
a variational inequality formulation. The physical problem is firstly introduced in order to
formulate a complementary problem. The variational inequality is then obtained by considering
the minimization problem of the energy involving to elastic deformation. Finally, the finite
element approximation with linear basis function to variational inequality over the finite element
space is presented.
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Physical Problem

Figure 1: Obstacle for a String

Consider the weightless elastic string connected A to B, called string, which is
displaced by a body C, called obstacle. The shape assumed by the upper part of the boundary of

obstacle C and the shape assumed by the string are represented by  and , respectively,

where, see Figure 1, [3],

(1.1)

Since the string tends to assume the shape with the minimum possible length, and

(1.2)

with  and  being continuous at the unknown boundary , (1.1)-(1.2) are equivalent to

(1.3)

Noting that

(1.4)

and, as the string is concave down in ,

(1.5)
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Now, (1.1)-(1.5) can be written on the fixed domain  as a complementary problem :

Problem : Find  such that

(1.6a)

with

(1.6b)

(1.6c)

Variational Formulation
Since the string  is being weightless, the only energy, E, involved is that due to

elastic deformation. Therefore, the minimization problem  can be formulated as follows:

Problem  : Let K be real Hilbert space defined as

Find  such that

 (2.1)

where

Noting that  denotes the Hilbert space consisting of functions ν defined in 

which together with their first derivatives are square-integrable.

Assuming that  is the solution of problem ,  and ,

then

and

Therefore, noting the definition of .

Hence, from (2.1) and u is the solution of (M), for small positive ,
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(2.2)

Dividing (2.2) by  and, then, letting  yields

Now let  be  with boundary conditions 

denoted by  and  be a bilinear form

expressed as

where  such that

1.  is symmetric, i. e.,

2.  is coercive, i. e., there is a constant  such that

 is a norm for 

3.  is continuous, i. e., there is a constant  such that

Therefore, problem (PM) implies the variational inequality problem (PV):

Problem (PV) : Find  such that

Let us show that the solution  of problem (PV) is also a solution of (PM). Suppose

that  solves problem (PV) then consider, for any 
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(2.3)

Recalling that  is coercive, then, , and (2.3)

becomes

which is problem (PM) being equivalent to problem (PV). Noting that the existence and

uniqueness of problem (PM) and (PV) are followed by the Lax-Milgram theorem�.

Now letting  and multiplying any function  to both sides of

(1.6c),

(2.4)

Integrating (2.4) by parts over 0 to l,

or

�Lax-Milgram Theorem: Given a real Hilbert space, V(.,.), a continuous, coercive bilinear functional

a(.,.) on V Ó V and a continuous linear functional  then there exists a unique  such that

, furthermore, where α is the coercive constant, .
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which is problem (PV). Therefore, the complimentary problem (PC) implies the variational

problem (PV).

Assuming that  satisfies

and  exists and is continuous, then the both terms on the left-hand side can be integrated

by parts. Noting that , thus

(2.5)

Since the continuity of , (2.5) can be hold only if . This shows that the variational

problem (PV) also implies the complimentary problem (PC). Up until now the equivalence of

problem (PC), (PM) and (PV) is possessed and can be written symbolically as

.

Finite Element Approximation
Let  be the finite element space approximating K and consisting of piecewise

linear functions.  is approximated by

where we let  be the finite element space approximating  be the value at the

node  and  be a basis (or shape) function for  defined by, for i, j = 1,2,...,M,

i.e.,  is the continuous piecewise linear function that takes the value 1 at node point  and

the value 0 at other node points.
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Figure 2: Basis Function 

For a finite element discretization, the variational inequality problem (PV) is con-

sidered over , that is

Problem (FV) : Find  such that

 for all (3.1)

which is equivalent to

Problem (FM) : Find  such that

 for all . (3.2)

For simplicity, let  be a partition of the interval

[0,l] into subintervals  of uniform length  Since 

and their representation are

respectively, where  and  (3.1) becomes

(3.3)
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Now, we shall show that (FV) implies the complementary problem. For simplicity,

we define . Fixing j = k and taking

in (3.3) yields

for all k. (3.4)

Again, taking

in (3.3) yields

 for all k. (3.5)

Therefore, by (3.4) and (3.5),

 for all k. (3.6)

Consider, again, noting (3.3) and (3.6),

Now taking, for fixed k,
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Hence

(3.7)

It follows that problem (FV), with (3.6) and (3.7), implies the complementary problem which

can be written in matrix form as, since  for all i,

Problem (FC) : Find  such that

(3.8a)

with

(3.8b)

(3.8c)

where  is the M Ó M symmetric positive definite matrix since

 is a symmetric coercive bilinear form, and the vectors where 

and  are the nodal values.

Let us show that problem (FC) also implies (FV). Consider at  point. If ,

on noting (3.8b-c), we must have  = 0, thus

And, if , then

and also 

We, hence, obtain

.

Therefore, it follows that
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Recently, the equivalence of the variational problem (FV) and the complementary

problem (FC) have been shown. Since the problem (FV) is also equivalent to minimisation

problem (FM), therefore the three problem (FV), (FM) and (FC) are equivalents which can be

written symbolically as (FV)  (FM)   (FC).

To compute , observing firstly that  since in this case

either  or  is equal to zero, we thus have for j = 1,...,M,

and for j = 2,...,M,

(3.9)

Thus the stiffness matrix A is expressed as

which is symmetric and positive definite‡.

‡Positive Definite Matrix: A symmetric M Ó M matrix A is said to be positive definite if for any non zero

vector x then .
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Conclusion
To sum up, the equivalence of complementary problem, minimization problem and

variational problem of the weightless elastic string with obstacle have been presented in both
continuous and discrete space. The possessed finite element formula leads to a system equations
with a symmetric, positive definite and sparse stiffness matrix.
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