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The Equivalence of Variational Inequality and Finite
Element Formulation of the Obstacle Problem

for a String

Pisuttawan Sripirom Sirininlakul

ABSTRACT

The equivalence of variational inequality and finite element formulation of one
dimensional obstacle problem is observed thru the weightless elastic string which is displaced
by a body. This is a simple physical problem which will lead to the mathematical idea of
a variational inequality formulation. The physical problem is firstly introduced in order to
formulate a complementary problem. The variational inequality is then obtained by considering
the minimization problem of the energy involving to elastic deformation. Finally, the finite
element approximation with linear basis function to variational inequality over the finite element

space is presented.
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Physical Problem
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Figure 1: Obstacle for a String

Consider the weightless elastic string connected A to B, called string, which is
displaced by a body C, called obstacle. The shape assumed by the upper part of the boundary of
obstacle C and the shape assumed by the string are represented by y/(x) and u(x), respectively,

where, see Figure 1, [3],
u"(x) = 0 in AA", BB'. (1.1)
Since the string tends to assume the shape with the minimum possible length, and
u =1y in AB (1.2)
with » and u’ being continuous at the unknown boundary A4'B’, (1.1)-(1.2) are equivalent to
(u(x)—t//(x))u”(x) =0. (1.3)
Noting that
u(x) > w(x) in AA' and BB, (1.4)
and, as the string is concave down in 4'B’,

u"(x) < 0in AB. (1.5)
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Now, (1.1)-(1.5) can be written on the fixed domain 4B as a complementary problem (PC):
Problem (PC):Find u(x) such that

(u(x)—w(x))u"(x) = 0 (1.6a)

with
u(x)—w(x) >0, (1.6b)
u"(x) < 0. (1.6¢)

Variational Formulation
Since the string 4B is being weightless, the only energy, E, involved is that due to
elastic deformation. Therefore, the minimization problem (PM) can be formulated as follows:

Problem (PM) : Let K be real Hilbert space defined as
K ={ve H'([0.11)|v(0)=v(/)=0 and v >y a.e. in [0,1]}

Find u(x) € K such that
Eu) < E(v) Ywek (2.1)
where
E(v) = lfl(v/(x))2 dx
=5/, _
Noting that H' ([0,]]) denotes the Hilbert space consisting of functions v defined in [0,/]
which together with their first derivatives are square-integrable.

Assuming that #(x) € K is the solution of problem (PM), Vv e K and 0 <A <1,

then
M(0) + (1= Du(0) = Av(l)+ (1= Ayu(l) = 0
and
Av(x) + (1=Du(x) > Ap(x) + (1= Dy(x) = y(x).
Therefore, noting the definition of K, Av+(1—A)u € K .

Hence, from (2.1) and u is the solution of (M), for small positive A,
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2

[ () ax < j:)l(/lv’—f—(l—/l)u’)zdx

! 2 !
_ / / !/ !/ 2
= [ () dx + 22 W/ (v —u')dx+O(2). 2.2)
Dividing (2.2) by A and, then, letting A — 0" yields

ﬂu'(v’ —u')dx > 0.

Now let H, ([O,l]) be H' ([0,1]) with boundary conditions v(0)=v(/)=0

denoted by H, ([0,1]) = {v cH' ([O,l]) [v(0)=v(l)= 0} and a(.,.) be a bilinear form
expressed as

a(u,v) = Llu'(x)v'(x)dx

where a(.,.): (H(l) ([O,l])x H(l) ([O,l])) — R, such that

1. a(.,.) is symmetric, i. €.,
a(u,v) = a(vu) Vu,veH, ([O,l]),
2. a(.,.) is coercive, i. e., there is a constant ¢ > 0 such that
a(v,v) > oc|v|12 VveH,, and |v| :(.E(v2 +(v) )dx); is a norm for H, ([0,7]).
3. a(.,.) is continuous, i. €., there is a constant ¥ > 0 such that
|a(u,v)| < y|u|l |v|1 Vu,ve H,([0,]]).

Therefore, problem (PM) implies the variational inequality problem (PV):
Problem (PV) : Find u(x) € K such that

a(u,yv—u)>0 Wwek.

Let us show that the solution # of problem (PV) is also a solution of (PM). Suppose
that # solves problem (PV) then consider, for any veE€ K C H (1) ([O,l ])
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%[a(v, v)—al(u, u)] = %[a(v, v)+a(u,v)—a(u,v)—a(u, u)]

= %[a(v, v)+a(u,v—u)—a(u,v)]

v

%[a(v, V) — a(u,v)]
= v =)~ a(v— )+ a(v— .0

= %[a(v—u,v—u)jta(v—u,u)]. (2.3)

Recalling that a(.,.) is coercive, then, a(v—u,v—u)> a|v—u|12 >0, for >0, and (2.3)

becomes
%(a(v,v)—a(u,u)) >0 or E(v)>E(u)

which is problem (PM) being equivalent to problem (PV). Noting that the existence and
uniqueness of problem (PM) and (PV) are followed by the Lax-Milgram theorem'.

Now letting #,v € K and multiplying any function (v—u)>0€ K to both sides of
(1.6¢),

u"(v-—u) = u"v-u"u <0. (2.4)
Integrating (2.4) by parts over 0 to [,
W' V)+ @' u') <0
or

W VY- u') =@ V-u)>0

TLaX-Milgram Theorem: Given a real Hilbert space, V(...), a continuous, coercive bilinear functional

a(.,) on V x V and a continuous linear functional F eV’ then there exists a unique u €V such that

a(u,v) = <F,V>V,‘,, , Vv eV furthermore, where o is the coercive constant, ||v||L < l“F”V
a
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which is problem (PV). Therefore, the complimentary problem (PC) implies the variational
problem (PV).

Assuming that # € K satisfies
! 1./ ! )
fuvdx—fuudxzo, Yve K
0 0

and u” exists and is continuous, then the both terms on the left-hand side can be integrated

by parts. Noting that #(0) =u(/) =v(0)=v(/) =0, thus
! 1 ! 1 ! 1/
—j;u vdx—l—f;u udx > 0 or J;u (v—u)dx <0. (2.5)

Since the continuity of #”, (2.5) can be hold only if #” < 0. This shows that the variational
problem (PV) also implies the complimentary problem (PC). Up until now the equivalence of
problem (PC), (PM) and (PV) is possessed and can be written symbolically as
(PCO)e (PV)e (PM).

Finite Element Approximation
Let K" be the finite element space approximating K and consisting of piecewise

linear functions. K" is approximated by

M
K" = {v| V= Zngoj(x) € V" and v, 2y(x,)j=1..,M
Jj=1

where we let V" be the finite element space approximating /, é ([O,l ]) v, be the value at the
node X; and ®; be a basis (or shape) function for V" defined by, for i, j = 1,2,...,.M,

{0 [ E

wj(xi) - I fi=j

ie., ¢, is the continuous piecewise linear function that takes the value 1 at node point x, and

the value O at other node points.
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Figure 2: Basis Function ¢,

For a finite element discretization, the variational inequality problem (PV) is con-
sidered over K", that is

Problem (FV) : Find u" € K" such that
a@" V' —u"y > 0 forall vV € K" (3.1)

which is equivalent to

Problem (FM) : Find u" € K" such that
E(u") < E(v") forall v € K", (3.2)

For simplicity, let 0=x, <x, <...<x,, <X,,,, =/ be a partition of the interval

[0,/] into subintervals IJ. = (xj_l,xj> of uniform length 7 — Xyt — %o '

M +1

Since u",v" € K"

and their representation are

M M
u' =D up(x) and V' =) g (x),
i=l1 i=1

respectively, where u, =u,(x,), v, =v,(x;) and x € [O,I], (3.1) becomes

Il
MR

<.

I
MR

— f:f:uia(goi,(pj)(vj—uj). (3.3)
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Now, we shall show that (FV) implies the complementary problem. For simplicity,

we define y, = l//(xj) . Fixing j = k and taking

u, i i=k,
v, = _
y, ifi=k

in (3.3) yields

S

Z”ia(%a%)(‘//k —u,) > 0 for all k.

i=1

Again, taking

u, if i=k,
Vi = .
2u, —y, ifi=k

in (3.3) yields

M

> ua(p.0, ), —y,) > 0 forall k.
i=1

Therefore, by (3.4) and (3.5),

M

Zuia((pl.,gok)(uk —y,) = 0 forall k.

i=1
Consider, again, noting (3.3) and (3.6),
M M

0 < Zzuia(gai’(qj)(vi_uj) = Zzuia<¢i’¢j)(vi_Wj +l//j_uj)

=1 j=I i=l j=

B ZZ”fCI(‘/’“%)(VJ —¥)-

=l j=I

Now taking, for fixed k,

u, it i=k,

Vi y,+1 it i=k
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Hence
M
Zuia((/)i>¢k) > 0. (3.7)

It follows that problem (FV), with (3.6) and (3.7), implies the complementary problem which
can be written in matrix form as, since u#, > , for all i,

Problem (FC) : Find u such that

(Au) (u—l/_/) =0 (3.8a)
with
Au > 0, (3.8b)
u >y, (3.8¢)
where Aij = a(tp[,(o j) is the M x M symmetric positive definite matrix since
u Vi
a(.,.) is a symmetric coercive bilinear form, and the vectors {b_t VLU } wherew =| : |, v =
W] uM vM
and w=| : | are the nodal values.
WM

Let us show that problem (FC) also implies (FV). Consider at i point. If u, >y,
on noting (3.8b-c), we must have (ALT)i = 0, thus

(A7) (v, —1,) = 0.
And, if u, =y, then
Au > Oand also v, —u, = v,—y, > 0.

We, hence, obtain

Therefore, it follows that

SIS Ay, —u)) = (A7) (7 7)

=1 j=I1

a(uh,vh —uh) > 0.
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Recently, the equivalence of the variational problem (FV) and the complementary
problem (FC) have been shown. Since the problem (FV) is also equivalent to minimisation
problem (FM), therefore the three problem (FV), (FM) and (FC) are equivalents which can be
written symbolically as (FV) < (FM) <> (FC).

To compute 4, observing firstly that a(goi,(/)j) =0 if |l' — j| > 1 since in this case

either @, or ¢. is equal to zero, we thus have for j=1,...M,
( ) B xj+l ’ /d
a (pj,§0j - v ¢j¢j X

= j; xj —dx + j; v %dx

J

2
=

and for j=2,..,M,

(3.9)
T |
= — . h—zdx
__1
h
Thus the stiffness matrix A is expressed as
2 -1 0 0
-1 2 -1 :
11 0 -1 2 —1
A=— . . . .
h 0
-1 2 -1
0 0o —1 2

which is symmetric and positive definite*.

*positive Definite Matrix: A symmetric M x M matrix A is said to be positive definite if for any non zero

vector x then x” Ax > 0.
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Conclusion

To sum up, the equivalence of complementary problem, minimization problem and
variational problem of the weightless elastic string with obstacle have been presented in both
continuous and discrete space. The possessed finite element formula leads to a system equations

with a symmetric, positive definite and sparse stiffness matrix.
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