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ABSTRACT

The rigorous lower bound for the ground state energy, £, > —c,. N in Rydberg unit,
in two dimensions of neutral matter of fermionic types with Coulomb interactions with fixed
positive charges is possessed by considering, in process, lower bound for the kinetic energy as
some power of an integral of pz where p is the particle density and, moreover, it is the inverse

proportion with the spin multiplicity.
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Introduction

A rigorous study of instability and stability of such systems for matter began several
years ago. The remarkable work of Dyson and Lenard [2] have been giving rise to the famous
N*“ power laws for the ground state energy. Many simplified derivation by Lieb and Thirring
[7-9] with tremendous improvements of the corresponding estimates have been given for the
“bosonic matter”, matter without the exclusion principle, and “fermionic matter”, matter with the
exclusion principle.

In the case of bosonic matter in two dimensions, the upper bound of the ground state

energy (£, ) have been derived by Muthaporn and Manoukain [12,13], as

E, <—0.0002N>

whereas Shiwongsa, Sirininlakul and Sripirom [16] possessed its exact lower bound,

E,>—-4(1-2Z_ )N’

max
which are satisfied the estimate for the upper and lower bounds of such matter in two dimensions
E, <—c,N* and E v > —c, N? respectively where ¢, and ¢, are positive constants.

Nevertheless, in order to investigate the nature of matter in two dimensions, there is
an important theoretical question:- will the matter change from a stable phase to an unstable or
explosive phase provide that the matter change from bosonic type to fermionic type? Conse-
quently, the investigation of fermionic matter has been also important to study, especially, for the
nature of a matter in two dimensions with the exclusion principle.

In this paper, to answer the above question, we derive a rigorous lower bound for the
ground state energy of the system with N electrons and N motionless positive charges with
Columbic interactions with the roles of the spin and statistics theorem. We also show that

fermionic matter is stable in two dimensions. The Hamiltonian considered in this paper is

. p? ol RN 2 R ety 2 -
HZ;E—FZe ’xi—xj’ +ZZ,-Z,-@ |Rl.—Rj| —ZZZje ‘xi—Rj| (1.1)

i<j i<j =1 j=1
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where X, and R,, respectively, denote the position of negative and positive charges,

i

N
and ZZ,-:N’ k >2 with fixed (motionless) positive charges. We note that on

i=l1

setting, =1, the third term in the right-hand side of (1.1) will be absent in the

dre,
expression for H and one would be dealing with an atom. Throughout this paper, we are

interested in the case for which k == 1 relevant to matter.

The Lower Bound of the Kinetic Energy

In order to obtain a lower bound for the ground-state energy of matter, first we have
to find a lower bound for the expectation value kinetic energy, T, which is the first term on
the right-hand side of (1.1). For simplicity, we consider the fermionic of spin % (electron).
In multi-particle systems, we also consider N identical fermions in each of mass m and

introduce the particle number density in two dimensions as

p(x)=N Z fd2X2...dsz|1//(X101,x202,...,xN0N)|2,

01,05 ,...,0

where 0,,0,,...,0, specify spin projection values of each spin multiplicity C=2s+1
for a particle of spin s and y is an N -fermion anti-symmetric normalized wave function.

The total number of particle, N, is obtained from the normalization condition
f d’xp(x)=N

and the wave functions y(X,0,,X,0,,...,X,0,) are assumed to satisfy the appropriate
statistics being anti-symmetric in the exchange of any two electrons which leads to the
equivalence of the interchange of the position-spin labeling symbolically as (X,0,) < (X,0,).

We now apply the Schwinger inequality [14], for a positive number &, the number
2

of eigenvalues (counting degeneracy) of a Hamiltonian g— — g(x) for k> 2 in two dimensions
m

is equal to or less than -¢, it follows that

N_(H,—g(x) <

m ) 2
yonz ) ¥le ) 2.1

where g(X) is positive function. Recently, an exact functional expression for N_.(H, — g(xX))
derived by Manoukian and Limboonsong [10] is not as upper bound as in (2.1).

For N_.(H,—g(x)) <1 and any 6 >0, we may choose ¢ in (2.1) such that
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2
—E=— x[g(x)] | (2.2)
2 2
so that N_. g——g(x) <1, which implies that N_, g—— g(x)|=0 and the right-hand
| 2m | 2m

2
side of (2.2) provides a lower bound to the spectrum of [2)—— g(x) since its spectrum would
m

then be empty for energies are equal or less than -£. Therefore, (2.2) gives the following lower

bound for the ground-state energy of the Hamiltonian as

o (1+0) [ d*x[g()] 23)

To obtain the lower bound for kinetic energy, T, of one particle systems, we first

consider the one particle with f d’x p(x) =1 and define the positive function

__w® .
g(x) fd x p* 7 (x) (2.4)

where 7 and a are positive, and g(X) is not the potential energy for any Hamiltonian.

This is introduced only in order to be able to obtain a lower bound for T. Substituting (2.4)

into [, P g(xX)|y ) we have that
2m

2

wg—m—g(X) p)=—(y-1T. (2.5)

Referring to the bound in (2.3) yields

2

p 2
v E_g(x) v x[g(x)] : (2.6)
Then on noting (2.5) and (2.6), it follows that
deX p2a (X)

=T -
(-nr=Z_Fa+ )Udzxp““(x)] ©.7)
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Choosing 2o =a+1 in the right-hand side of (2.7), we hence have a=1 and the

inequality becomes

S e T

Optimizing (2.8) over y yields
y=2.

Together with & =1 we obtain the positive function g(X) in term of p’ (X) as

g(x)= or PN
[ @p*x)

1//>:2T

Noting (2.2), for N identical fermions, we obtain

vt

> e(x)

where Zg(xf) = g(x).

Considering the operator

N

2.

i=1

2
%—g(xi)] (2.9)

defining a hypothetical Hamiltonian of N non-interacting fermions which, however, interact
with the external “potential”, g(X) we have

<W Z[%—g(xi)] W>=—T- (2.10)

i=1
To obtain a lower bound to the lower end of the spectrum of the “Hamiltonian”

operator, (2.9), we note that, allowing for multiplicity and spin degeneracy, the N fermions can
be placed in the lowest energy levels of the “Hamiltonian” to conform with Pauli’s exclusion
principle. To define the lowest energy of the Hamiltonian, if N is larger than this number of
levels, the remaining free fermions may be chosen to have arbitrary small kinetic energies
(T — 0) and be infinitely separated. That is, in all cases, the Hamiltonian (2.9) is bounded

below by ¢ times the ground-state energy (2.2). For N identical fermions, it follow from (2.6) that
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v -

On noting (2.10) and (2.11), we finally have the expectation value of the kinetic energy T as

nh’ 2, 2
>_—
> 2Cm(1+5)fd X p(X) (2.12)

x[g(x)] - (2.11)

(P
;[m g(x,)

for any 0 > 0 and N identical fermions.

The Exact Bound for Coulomb Potential

We first apply the general bound for Coulomb potential in two dimensions which

derived in Shiwongsa, Sirininlakul and Sripirom[16] as

i eZA,-A_; :z]v:ezAjfdz p(x) __fdz /fd2 p(X)p(x)

xl—xj‘ = x —X, |x x‘
ezio - 2 e’ 20 2
- Z;Aj—?fd xp’ (%) (3.1)
=

where 4 = /4, is a parameter derived by optimizing the Hamiltonian. It is then straightforward
to apply (3.1) twice, once to the repulsive potential (electron-electron interaction), the second
term in the right-hand side of (1.1). Let 4, = A4, =1 and k — N, we obtain

Zk: Ze fdz p(X) ——fd2 /fdz p(X)p(x)

X—X |X X|

el e’ 5,
- ;pffd xp (%) (3.2)

X. —X‘

i

and, again, to the repulsive potential (nucleus-nucleus interaction), the third term in the
right-hand side of (1.1). Let 4 =Z,, Aj = Zj. and X, — Rj, we also have, for k > 2,

"ZZ_Z - zzfdz p(»ﬁ‘ © [ [ a2

[x—x]

J
N

—%fdzxpz(x). (3.3)

J=1
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N k
We substitute (3.2), (3.3), Zl:N and ZZizN where k>2, into (1.1)

j=1 i=1

the ground state energy, <§l/|H |l//> is expressed as, for k > 2,

(w|H|p)=T+(w p)+(w

Zefdz |P()‘

Z ZZdeZX p(x) ‘t//

i x—R,|

2re?

—<w fdzxpz(x) t//>—<w 6210 [N+;Zf] v/>
27 2 N eZZj
< [ [t > 3 ey O RCE!

Lower Bound for the Ground State Energy

On noting (3.4), we obtain the ground-state energy of N identical fermions as, for

o

f d*xp? (x)
N+ZZZ

k>2,

27e’
— [dxp’(x)

()=~

Optimizing (4.1) over /, gives

Now substituting (4.1) into (4.2) gives the remarkably simple bound as, for & > 2,
k % I
(W|H|¢,> = T—2e2\/;[N—|—ZZf] (fdzxpz(x))z . (4.3)
=

Equation (4.3) suggests us to use the lower bound for the kinetic energy, T, in some power of
an integral of p’ (x) Substituting (2.12) into (4.3), the lower bound for the ground state

energy of the fermionic matter in two dimensions is expressed as, for k > 2,
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hz 2 2 2 - 2% 2 2 %
(ltly) = 5z o2 JZ[N+;Z,.] ([ @)

2

N =

= ﬂ—hz (fdzxpz(x))i—ezx/;[N—i—Zk:Zf]

28 m(145)

_647{[M][N+izf].

2
wh i=1

Taking O be arbitrary small and 0 < N yields

k

: > %
|

me
2h?

N1+, (4.4)

(v} > -4z -

Now, we note the bound
2
ZZJ <Zyw ) 2y = ZyuN (4.5)

where Z,,,, corresponds to the nucleus with largest charge in unit of |e|. Substituting (4.5)
into (4.4), we finally obtain the lower bound for the ground state energy of fermionic matter

in two dimensions as

(w|H|y) > —c.(ON

4
where ¢, =4( (1+ZMAX)[I:—;2].
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Conclusion and Discussion

We obtain an N behavior which is to be compared to the N one in three dimensions
of Dyson [2], Lenard [6], Lieb [7,8], Lieb and Thirring [9], and Manoukian and Muthaporn [11].
The ground state energy for fermionic matter will grow not slower than —N and is obviously
quite relevant physically to the stability of matter. A power law behavior with N power one
implies that stability as the formation of a single system consisting of (ZN +2N ) particles is
favoured over two separate systems brought together, each consisting of (N +N ) particles, and
on energy released upon the collapse of the two systems into one, being proportional
to |(2N)—2(N)|=0, will be overwhelming large for realistic large N, e.g., N ~ 10°. 1t leads

to the conclusion that as more and more matter is put together, matter will inflate.
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