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ABSTRACT

The rigorous lower bound for the ground state energy,  in Rydberg unit,

in two dimensions of neutral matter of fermionic types with Coulomb interactions with fixed

positive charges is possessed by considering, in process, lower bound for the kinetic energy as

some power of an integral of  where  is the particle density and, moreover, it is the inverse

proportion with the spin multiplicity.
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Introduction
A rigorous study of instability and stability of such systems for matter began several

years ago. The remarkable work of Dyson and Lenard [2] have been giving rise to the famous
 power laws for the ground state energy. Many simplified derivation by Lieb and Thirring

[7-9] with tremendous improvements of the corresponding estimates have been given for the
çbosonic matteré, matter without the exclusion principle, and çfermionic matteré, matter with the
exclusion principle.

In the case of bosonic matter in two dimensions, the upper bound of the ground state
energy  have been derived by Muthaporn and Manoukain [12,13], as

whereas Shiwongsa, Sirininlakul and Sripirom [16] possessed its exact lower bound,

which are satisfied the estimate for the upper and lower bounds of such matter in  two dimensions
 and  respectively where  and  are positive constants.

Nevertheless, in order to investigate the nature of matter in two dimensions, there is
an important theoretical question:- will the matter change from a stable phase to an unstable or
explosive phase provide that the matter change from bosonic type to fermionic type? Conse-
quently, the investigation of fermionic matter has been also important to study, especially, for the
nature of a matter in two dimensions with the exclusion principle.

In this paper, to answer the above question, we derive a rigorous lower bound for the
ground state energy of the system with N electrons and N motionless positive charges with
Columbic interactions with the roles of the spin and statistics theorem. We also show that
fermionic matter is stable in two dimensions. The Hamiltonian considered in this paper is

(1.1)
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where  and , respectively, denote the position of negative and positive charges,

and ,  with fixed (motionless) positive charges. We note that on

setting,  the third term in the right-hand side of (1.1) will be absent in the

expression for H and one would be dealing with an atom. Throughout this paper, we are
interested in the case for which  relevant to matter.

The Lower Bound of the Kinetic Energy
In order to obtain a lower bound for the ground-state energy of matter, first we have

to find a lower bound for the expectation value kinetic energy, T, which is the first term on
the right-hand side of (1.1). For simplicity, we consider the fermionic of spin  (electron).
In multi-particle systems, we also consider N identical fermions in each of mass m and
introduce the particle number density in two dimensions as

where  specify spin projection values of each spin multiplicity 
for a particle of spin s and  is an N -fermion anti-symmetric normalized wave function.
The total number of particle, N, is obtained from the normalization condition

and the wave functions  are assumed to satisfy the appropriate
statistics being anti-symmetric in the exchange of any two electrons which leads to the
equivalence of the interchange of the position-spin labeling symbolically as  .

We now apply the Schwinger inequality [14], for a positive number , the number

of eigenvalues (counting degeneracy) of a Hamiltonian  for  in two dimensions
is equal to or less than - , it follows that

(2.1)

where  is positive function. Recently, an exact functional expression for 
derived by Manoukian and Limboonsong [10] is not as upper bound as in (2.1).

For  and any , we may choose  in (2.1) such that
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, (2.2)

so that , which implies that  and the right-hand

side of (2.2) provides a lower bound to the spectrum of  since its spectrum would

then be empty for energies are equal or less than - . Therefore, (2.2) gives the following lower
bound for the ground-state energy of the Hamiltonian as

. (2.3)

To obtain the lower bound for kinetic energy, T, of one particle systems, we first
consider the one particle with  and define the positive function

(2.4)

where  and  are positive, and  is not the potential energy for any Hamiltonian.
This is introduced only in order to be able to obtain a lower bound for T. Substituting (2.4)

into  , we have that

(2.5)

Referring to the bound in (2.3) yields

 (2.6)

Then on noting (2.5) and (2.6), it follows that

(2.7)
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Choosing  in the right-hand side of (2.7), we hence have  and the
inequality becomes

(2.8)

Optimizing (2.8) over  yields
.

Together with  we obtain the positive function  in term of  as

Noting (2.2), for N identical fermions, we obtain

where .

Considering the operator

(2.9)

defining a hypothetical Hamiltonian of N non-interacting fermions which, however, interact
with the external çpotentialé,  we have

(2.10)

To obtain a lower bound to the lower end of the spectrum of the çHamiltoniané
operator, (2.9), we note that, allowing for multiplicity and spin degeneracy, the N fermions can
be placed in the lowest energy levels of the çHamiltoniané to conform with Pauliûs exclusion
principle. To define the lowest energy of the Hamiltonian, if N is larger than this number of
levels, the remaining free fermions may be chosen to have arbitrary small kinetic energies

 and be infinitely separated. That is, in all cases, the Hamiltonian (2.9) is bounded
below by  times the ground-state energy (2.2). For N identical fermions, it follow from (2.6) that
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 (2.11)

On noting (2.10) and (2.11), we finally have the expectation value of the kinetic energy T as

(2.12)

for any  and N identical fermions.

The Exact Bound for Coulomb Potential

We first apply the general bound for Coulomb potential in two dimensions which
derived in Shiwongsa, Sirininlakul and Sripirom[16] as

(3.1)

where  is a parameter derived by optimizing the Hamiltonian. It is then straightforward
to apply (3.1) twice, once to the repulsive potential (electron-electron interaction), the second
term in the right-hand side of (1.1). Let  and , we obtain

(3.2)

and, again, to the repulsive potential (nucleus-nucleus interaction), the third term in the
right-hand side of (1.1). Let  and , we also have, for ,

 
(3.3)
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We substitute (3.2), (3.3),  and  where , into (1.1)

the ground state energy, , is expressed as, for 

(3.4)

Lower Bound for the Ground State Energy
On noting (3.4), we obtain the ground-state energy of N identical fermions as, for

,

  (4.1)

Optimizing (4.1) over  gives

.
(4.2)

Now substituting (4.1) into (4.2) gives the remarkably simple bound as, for ,

(4.3)

Equation (4.3) suggests us to use the lower bound for the kinetic energy, T, in some power of
an integral of . Substituting (2.12) into (4.3), the lower bound for the ground state
energy of the fermionic matter in two dimensions is expressed as, for ,
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Taking  be arbitrary small and  yields

(4.4)

Now, we note the bound

 (4.5)

where  corresponds to the nucleus with largest charge in unit of . Substituting (4.5)
into (4.4), we finally obtain the lower bound for the ground state energy of fermionic matter
in two dimensions as

  

where 
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Conclusion and Discussion
We obtain an  behavior which is to be compared to the  one in three dimensions

of Dyson [2], Lenard [6], Lieb [7,8], Lieb and Thirring [9], and Manoukian and Muthaporn [11].
The ground state energy for fermionic matter will grow not slower than  and is obviously
quite relevant physically to the stability of matter. A power law behavior with  power one
implies that stability as the formation of a single system consisting of  particles is
favoured over two separate systems brought together, each consisting of  particles, and
on energy released upon the collapse of the two systems into one, being proportional
to , will be overwhelming large for realistic large , e.g., 23. It leads
to the conclusion that as more and more matter is put together, matter will inflate.
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