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Pair Distribution Function and Structure Factor
of Liquid Metallic Hydrogen from Thermodynamic

Dependent Hard Sphere Model
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ABSTRACT

The pair distribution function and structure factor of liquid metallic hydrogen at
various densities and pressures are determined using the Ornstein-Zernike equation and the
thermodynamic dependent hard-sphere model. The Percus-Yevick approximation is employed
to solve for the pair distribution function at three different hard sphere radii. Consequently,
the structure factor is determined from the pair distribution function and then employed to
determine the electrical resistivity using the well known Zimanûs formula. We conclude from
the result that the metal-insulator transition of the metallic hydrogen due to pressure is speculated
to occur if the first structure factor peak passes across 2kF.
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Introduction
In 1996, Weir et al. [1] have reported their success in making liquid metallic

hydrogen (LMH) under the high pressures between 93 to 180 GPa and high temperatures
between 2,200 to 4,400 Kelvin. The densities of the liquid metallic hydrogen associated to
these pressures and temperatures have been determined to be in the range of 0.28 to 0.36 moles
per milliliter. The resistivity was found to decrease for four order of magnitudes, from 106

µΩ-cm to about 500 µΩ-cm. They expected that its conductivity decreases exponentially from
a constant value σ0 like the Boltzmann factor, i.e. σ = σ0 exp[›Eg(d)/kBT], where Eg is the
energy gap which is dependent on the density d of liquid metallic hydrogen. This experiment
has confirmed the long-ago prediction of Wigner and Huntington [2] about the metal-insulator
transition in pressurized hydrogen. Later in 2001, the same group of physicists [3] as in ref.
[1] has also published similar results in liquid oxygen. The problem of LMH has been of
interested till present days. In 2006 Shvets et al. [4] has determined the resistivity of metallic
hydrogen by employing the perturbation theory in the electron-proton interaction. Thermodynamics
of the proton subsystem is assumed to be given by the Percus-Yevick equation. The hard-sphere
potential is used in the calculation. Shivets [5] has also determined the equation of state of liquid
metallic hydrogen for the temperature range of 3,000 to 20,000 K and densities from 0.2 to 3
mole/cm3, which correspond to both experimental conditions on earth and in the cores of giant
planets such as Jupiter and Saturn. In his calculation the hydrogen was assumed to be in atomic
state and all its electrons were collectivized. Perturbation theory with the hard-sphere model
was used in the electron-proton interaction. Recently, in 2008 Shivets [6] has determined the
electrical conductivity of LMH at a temperature of 3,000 K and density of 0.3 mole/cm3.
Hydrogen was treated as a ternary system. One subsystem was provided by protons and the
second one-by neutral atoms of hydrogen. The third subsystem was the electron which was
modeled by the nearly free electron. The simple hard-sphere model was used in this calculation.

It is therefore interesting for physicists to find out the mechanism of this transition
and conditions to have this metallic state. To get these answers, one has to know the microscopic
structure of liquid, especially the LMH being considered. There should not be long-range
periodic structure in liquid since the constituent atoms or molecules are not localized. There are
interactions between ions and ions, ions and electrons, and also electrons and electrons.
The potential energy between ions and ions is the key interaction leading to a microscopic
quantity of the system called pair distribution function (PDF). The PDF tells a chance
(or probability) to find another particle at a distance measured from the center of a particle
of interest.
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Many authors have determined the transition pressure of hydrogen from insulator
to metallic phase to be about 250 GPa. At room temperature and normal pressure on the
earth surface (~ 10›4 GPa), Hydrogen is in molecular form of gas. At huge pressure of about
100 GPa, hydrogen could not be in molecular form any more. Ceperley and Adler [7] have
used the quantum theory with the diffusion Monte Carlo method to determine the transformation
of hydrogen from molecular to atomic form at the pressure of about 300 GPa. Later, Barbee
et al. [8] have used the local density approximation (LDA) to predict that hydrogen molecules
will diminish at the pressure of about 380 GPa. In 1995, Holmes et al. [9] have proposed
that hydrogen molecules partially transform to atomic form and therefore hydrogen is a mixture.
The fraction of atomic hydrogen will increase as a function of pressure. For example, there is
about 5% of atomic hydrogen at the pressure of 140 GPa and at 300 Kelvin. There is also
another aspect of liquid metallic hydrogen seen by Kohanoff and Hansen [10]. They see metallic
hydrogen as plasma at high pressures and high temperatures. Valence electrons behave like
free fermions which do not attach to the core ions any more. Electrons therefore are treated as a
rigid homogeneous Fermion gas with positive core ions suspending among them. This model is
known as the one-component plasma (OCP), and is similar to the conventional model of normal
metals. Ceperley [11] has used a numerical method called çpath integral Monte Carloé
to determine the PDF.

In this paper, we use the hard sphere model and the pair correlation function
derived by Wertheim [12,13] to determine the PDF of LMH. Instead of a constant value,
we assume the hard sphere radius to be dependent on the thermodynamic quantities of the system
such as density, temperature and pressure. Our calculated PDFûs at various pressures are
compared with the results of Xu and Hansen [15] who employed the density functional theory
(DFT). Furthermore, we also determine from our PDFûs the structure factor at corresponding
pressures. Consequently, the structure factor is employed to determine the electrical resistivity
using the well known Zimanûs formula. The results are presented in the last section.

Method
The system being considered is in a thermal equilibrium and consists of a very

large number of atoms, say N, which approaches infinity. Let V be the volume which is also very
large compared to the atomic volume. The PDF of an isotropic and homogeneous liquid
is determined from the average counting number of atoms away at a point r from a particle of
interest, namely
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(1)

where d is the number density or number of atoms per unit volume, i.e. N/V, which must be
finite; and rij is the distance from atom i to atom j. Physically, the PDF tells us about the chance
to find another particle next to the center of the interested particle. In case of an ideal atomic gas
that has no correlation among the atomic constituents, g(r) = 1. For the liquid or other systems
with correlation among atoms, g(r) oscillates around g(r) = 1 and converges to unity at infinity.
The distance from the origin to the first peak of g(r) tells us about the distance for the first
chance to find another atom. The structure factor of a system defined as

(2)

This quantity can be determined experimentally and theoretically can be written as a function of
the PDF as

(3)

The PDF can also be used to determine other physical quantities of the system such as the
internal energy, the pressure, the compressibility, the chemical potential, etc.

Ornstein and Zernike were the very first persons who suggested about the correlation
functions. They defined the total correlation function h  as a collection of correlation among
particles in the system, where  is the displacement of any two particles, namely

(4)

or

(5)

This equation is known as the Ornstein-Zernike (OZ) equation. Physically, the first part 
is called the pair correlation function and contributed from sole interaction between the first
and the second particles while the integral term is contributed from other ambient particles.
Hence, in the isotropic case the total correlation function will be

(6)

We may see that eq. (6) is a function of itself and must be solved self consistently. To find the
solution of the OZ eq., we follow the method of Wertheim [12] who used the approximation of
Percus and Yevick [15]. The procedure is described as followed:
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The PDF is assumed dependent on the temperature, similar to that in the Boltzmann
statistics, i.e. , with  where  is the potential energy of a
pair of particles, and  is a function to be determined. Percus and Yevick have approximated
the pair correlation function to the PDF by the equation

(7)

so that  with  The OZ eq. in (5) can therefore be written as

(8)

The above equation, known as the Percus-Yevick equation (PY eq.), was used by Wertheim [12]
to determine the pair distribution by assuming  as a hard sphere potential. Wertheim
has also used the Laplace transform to solve for the result and established an equation of state
of the system:

(9)

where P is the pressure of the system, η the packing fraction, and α the hard sphere radius.
The packing fraction η is defined by the relation η = πdα3/6.

The Fourier transform eq. (6) is thus

(10)

where  and . Hence, the second term of eq. (10) is

(11)

It should be noted that the Convolution Theorem (see Appendix) has been used to obtain the last
integral in eqs. (10) and (11). Hence
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(12)

In this paper, we use the c(r) determined by Wertheim in the hard sphere model, namely

(13)

(14)

where λ1 = (1+2η)2/(1›η)4 and λ2 = ›(1+0.5η)2/(1›η)4.
Substituting c(r) into eq. (13) gives

(15)

Results for each above integral are

(16)

(17)

Therefore,

(18)

(19)

The simplified form of above equation is
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(20)

where

The total correlation function h(r) is therefore the inverse Fourier transform of H(k), i.e.

(21)

Since h(r) is spherically symmetric under the isotropic assumption, the integral over the above
integral is reduced to

(22)

Numerical values of h(r) and g(r) can be obtained after C(k) is substituted.
In this paper, the hard sphere parameter α is not a fixed quantity but assumed to be

dependent on the density of the system. Normally, the number density is expressed through a
dimensionless radius called rs, which is related to the number density d of the system by the
following equation

(23)
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with a0 representing the Bohr radius and a1 the volume associated with one atom, i.e. .
Hence a1, may also be interpreted as the shortest distance to the next nearest neighbor. In the
atomic mass unit, where a0 = 1, we have rs = a1.

For α = rs, we have the packing fraction η equal to 0.125 which is a very small
number compared to the packing fractions of face centered cubic (fcc) and the body-centered
cubic (bcc) of solids, namely ηfcc 

= 0.74 and ηbcc= 0.68. Therefore, if the hard sphere radius is
set equal to rs, it means that the system has low density. The PDF calculated from this hard
sphere radius will be suitable for the system with low density as well. The liquid metallic
hydrogen being considering has, of course, high density and does need to get a suitable
hard-sphere radius. We employ Wertheimûs equation of state in eq. (9) to determine the
hard-sphere radii at various pressures. We see from the variation of hard-sphere radii on
pressures plotted for rs = 2 and T = 3,000 K in Fig. 1 that for the pressures in the range of
93-180 GPa the α is about 3.10 to 3.45 Bohr units or about to 1.6 rs to 1.7 rs. The calculated
hard sphere radius will be called as the effective hard sphere radius. The experimental physical
quantities such as the pressure, the temperature and the density are needed to determine
the effective hard sphere radii at different conditions. The d,T,P from first three rows of Table
1 are obtained from experiments of Weir et al. [1] and our calculated values of the hard sphere
radius rs, hard sphere parameter α, and packing fraction η are presented in rows 4-7.

Table 1 Thermodynamic quantities and the calculated hard sphere radii with corresponding
packing fractions. The packing fraction in the last row is approximated to be 
since  and the average for the experimental pressure range (93-180 GPa) is
3.28 amu.

d (mole/cm3) 0.280 0.289 0.310 0.318 0.327 0.343 0.360
T (Kelvin) 2,200 2,300 2,590 2,780 3,000 3,650 4,400
P (GPa) 93 100 120 130 140 160 180
rs(a0) 2.123 2.100 2.052 2.035 2.016 1.984 1.952

α (amu) 3.447 3.410 3.331 3.318 3.258 3.177 3.092
η = πdα3/6 0.535 0.535 0.535 0.542 0.528 0.513 0.497
η ≅ 4.41/r3

s 0.46 0.47 0.51 0.52 0.54 0.56 0.59
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Figure 1 Variation of hard-sphere radii on pressures plotted for rs = 2 and T = 3,000 K

The packing fraction in solid structures is well determined because of the fixed
positions of ions inside. Packing fractions of well-known Bravais lattices are, for example,
ηfcc 

= 0.74, ηbcc = 0.68 and ηsc 
= 0.52. We may notice that the packing fraction of the fcc lattice

must be the most compact packing. The case of η > 0.74 could mean overlapping of atoms
(or bases) of the structure. In liquids, the symmetry breaks down and therefore the packing
fraction is difficult to obtain. The inter-ion or inter-atomic distance in liquid must be averaged
over all possible configurations. Bernal has used random-closed-packed atoms in liquids to get
the value of η

 
= 0.638. This value has been accepted to be the maximum possible packing

fraction of liquids without assuming overlapping of atomic constituents. Many authors have
used η from 0.35 to 0.50 to get values of the PDF and the structure factor S(k) comparable to
the experimental values. However, in the case of liquid metallic hydrogen, there is no exper-
imental value of PDF and S(k) due to very small mass of atomic hydrogen that make neutron
scattering experiment impossible. When the pressure is increased the constituent atoms should
be closer and thus the packing fraction should be larger. However, the results in Table 1 provide
the decrease of packing fraction due to pressures. The averaged hard-sphere radius in the pressure
range of 93 to 180 GPa from the Table is thus  = 3.28 amu. We use this averaged value to
evaluate the packing fraction via the relation

(24)

where rs ∈ [1.952, 2.123] .
We therefore can see that the calculated packing fraction increases when the pressure

increases. The physical quantities in first three rows in Table 1 are experimental while the
rest four rows are calculated ones. Since the temperature effect could expel atoms away from
each other and hence increase the packing fraction. In fact, the thermodynamic variables
are dependent to each other via the equation of state. However, we assume that the pressure
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dominates the temperature effect, and thus the packing fraction should increase. This assumption
is reasonably made due to the fact that metallization may occur as the atoms coming closer
which certainly increase overlapping of wave functions of electrons in the systems.

Results
a) The pair distribution function

We have determined the PDF for three values of rs of metallic liquid hydrogen
from the basic equation g(r) = h(r)›1 and Wertheimûs correlation function

(25)

and from eq.(20). Comparison of our results with Xu-Hansenûs [16] obtained from the
density functional theory is shown in Figures 2 to 4. We have also presented in Figure 5 the
PDFûs at three pressures; 93, 140 and 180 GPa; corresponding to the data shown in Table 2.

Table 2 The data used in the PDF calculation at three values of rs.

rs 0.5 1.0 1.5
d (mole/cm3) 21.42 2.68 0.79

α (amu) 0.75 1.54 2.30
η 0.638 0.638 0.638

P(α,d) (GPa) 4,424 693 197
P(η,d) (GPa) 23,000 2,880 782

0 1 2 3 4 5 6
0

1

2 present

DFT

(
)

g
r

0.5

3,000K

sr

T

0/r a

=

=

Figure 2 Calculated PDFûs at rs = 0.5 and T = 3,000 K compared with that determined using
the density functional theory (DFT).
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Figure 3 Calculated PDFûs at rs = 1.0 and T = 3,000 K compared with that determined using the
density functional theory (DFT).

 

Figure 4 Calculated PDFûs at rs = 1.5 and T = 3,000 K and compared with that determined
using the density functional theory (DFT).

Figure 5 Comparison of present PDFûs at three pressures: 93, 140 and 180 GPa.
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In comparison with the DFT results of Xu-Hansen, we can see that the first peaks of
our PDFûs are very closed to theirs but next peaks shift a bit. The first peak of PDF is the most
important since it shows maximum probability of finding the next atom next to the one
being considered at the origin. The rs = 0.5, 1.0 and 1.5 correspond to the densities of 21.42,
2.68 and 0.79 mole/ml which is still very far away realistic experiments currently done on
earth. Liquid metallic hydrogen achieved experimentally has the density between 0.28 to 0.36
mole/ml. Physicists believe that the very high densities may be available in the core of Jupiter.
Calculated PDFûs at three pressures are compared and shown in Figure 5. We see that the
height of the peak decreases with the increase of the pressure. However, we cannot make any
clear conclusion on the pressure since each system has other thermodynamic conditions.

b) The structure factor
We have determined the structure factor of using the Percus-Yevick equation with

the correlation function of Wertheim from the following equation.

(26)

After substituting g(r) into eq. (3) we obtain S(k) in an analytic form as

(27)

where C(k) is the already-determined correlation in momentum space. We may note here that
S(k) is dependent on the transferred momentum k and the number density d which is directly
related to the effective radius α. The calculated structure factors at four different pressures
are presented in Figures 6-9. The shaded area of the S(k) shows the values of k below 2kF.
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Figure 6 S(k) at the pressure of 130 GPa.

Figure 7 S(k) at the pressure of 140 GPa.

Figure 8 S(k) at the pressure of 160 GPa.
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Figure 9 S(k) at the pressure of 180 GPa.

c) The electrical resistivity
Basically, the electrons in our system is assumed to move freely without self

scattering, also called plasma scattering, the electrical resistivity of our system is determined
using the electrical conductivity formula from the Drude model, namely

(28)

where  is the Fermi velocity with Fermi wave vector determined from the

relation with the electron density: . The mean free path  is obtained using
Zimanûs method [17] and the Born approximation, i.e.

(29)

where Ni is the density of scattering centers in the system with scattering differential
cross section ξ(θ). Ziman has determined this quantity for spherical symmetric scattering
potential to be

(30)

where Uk is the pseudo-potential in momentum space. Ziman has introduced the averaged
scattering factor  to be

k (amu
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(31)

Therefore, the mean free path is

(32)

We see that our electrons can çseeé only ions in the system by neglecting contribution from
other electrons. Hence, we [18] use the pseudo-potential introduced by Faber [21] to get

, (33)

with . We are now able to use eq. (28) with the help of eqs. (32) and (33) to
determine the electrical resistivity of the system. Our calculated results at various pressures are
compared with the experimental results of Weir et al. [1] in Fig. 10. Details of the results are
also presented in Table 3 below.

Figure 10 Calculated resistivity compared with experimental results of Weir et al.
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Table 3 Show the position of the 1st peak, the value of 2kF, and the calculated resistivity at
different pressures.

P (GPa) 93 100 120 130 140 160 180
1st peak (amu-1) 1.63 1.68 1.79 1.83 1.90 1.98 2.11

k (amu-1) 1.81 1.83 1.87 1.89 1.90 1.93 1.97
ρ(Ω›cm) 113 104 86 80 47 10 4

Discussion and Conclusion
The calculated results of pair distribution functions and structure factors of liquid

metallic hydrogen using the classical hard sphere potential are presented in the last section.
The PDFûs have been compared with that calculated from the density functional theory of Xu
and Hansen. The first peaks appear to be lower but do not show very much different in position.
The calculated PDFûs seem to oscillate the same way as that from the DFT theory. In Figure 5,
the calculated PDFûs at different pressures do not show significant difference in position of the
first peak. They just show clearly lower first-peak height at higher pressure. Corresponding
structure factors at those pressures are also presented and show a little shift of the first peak
in k space. Since the experimental result of the PDFûs is still not available to compare our
results with. The calculated results might not be exact, however they show dependency on
physical parameters used. The results are also very much dependent on the classic hard sphere
model that seems to be possible to lead to analytical calculation and numerical graphing.
However, it is too far and too difficult to interpret this calculation results in terms of what
really happen to the liquid such as it is a molecular or atomic liquid, or mixed form. Our next
task is to replace the hard sphere model with a more realistic potential such as the collapsing
hard sphere model [20, 21] that introduces a small collapsing region of the collision as another
parameter. The self-consistent Ornstein-Zernike of this system with the Percus-Yevick
approximation should be solved analytically using a mathematical transformation such as the
Laplace transform. We conclude from the results that the metal-insulator transition of the
metallic hydrogen is speculated to occur when the first peak of the structure factor shifts
across 2kF.
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Appendix: The Convolution Theorem
The Fourier transforms of p(y) and q(y) are defined as

The Convolution Theorem states that

This can be proved as following

and from   

by defining the new variable z = x›y so that y = x›z and dy = › dz. Substituting y and dy into
above equation leads to

Hence

and therefore
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