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Deflation of Matter without Exclusion Principle
in Two Dimensions
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ABSTRACT

The relationship between number N of negatively charge particle and radius R of
matter without exclusion principle in this paper implies that the matter will deflate if we put
more and more such matter together. For a non-vanishing probability of having the negatively
charged particle, with Coulomb interactions, within a circle of radius, necessarily cannot shrink
faster than N›1/2 for large N
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Introduction
The key result in the problem of the instability of matter without exclusion principle

çbosonic matteré as well as stability of matter with exclusion principle çfermionic matteré, is
the ,  law behavior  of the ground-state energy, has been carried out in the
early classic work [1-5]. In case of α = 1 matter is stable, Manoukian and Sirininlakul [6] have
recently shown that for a non-vanishing probability of having electrons in matter, with Coulomb
interactions, within a sphere of radius R, the latter necessarily grows not any slower than

   for large, N where N denotes the number of electrons. This conclusion is based on in terms
of derived inequality relating to the probability for the electrons lying within such a sphere,
the volume  of the latter and the number N of electrons. In other case, such a power law
behavior with α > 1 impliying that the formation of single system (in three dimensions) consisting
of (2N + 2N)  particles is favored over two separate systems brought together each consisting of
(N + N) particles describing that the energy will be released upon the deflation of the two systems
into one. What conclusion can be draw about this matter if the dimensions are changed from
three to two? In case of two dimensions, there have been much interested in the ground-state
energy of bosonic matter during recent year, e.g. [7,8,9]. As a matter of fact, it is an important
theoretical question to investigate if the change of dimensions of space will change matter from
unstable to stable phase. The purpose of this paper is to prove rigorously for a non-vanishing
probability of having negatively charge particles in matter within a circle of radius R.
The relationship between N and R will lead to conclude that bosonic matter is unstable
(deflation) or stable (inflation) for large N.

Upper Bound for ∫d2x➝ρ2(x➝)

We first derive an upper bound to the expectation value of the kinetic energy of the
negatively charged particles. We define the particle density of N (spin 0) bosons:

(1)

and ∫d2x➝ρ2(x➝) = N, Ψ denotes a normalized state giving a strictly negative expectation value of
the Hamiltonian,

(2)
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where m denote the mass of negatively charged particle, denote atomic number and x➝, R
➝

correspond, respectively, to positions of negatively charged particles and nuclei in two
dimensions. We have also considered neutral matter 

Let |Ψ(m)〉 denote a normalized state giving a strictly negative expectation value for
the Hamiltonian, i.e.,

(3)

where  is the ground-state energy. The negative spectrum of H easily follows by
noting that  is bounded above by  and we have emphasized its depen-
dence on the mass of the negatively charged particle. To establish the statement made above, we
need upper and lower bounds to the expectation value of the kinetic energy operator

(4)

Here we note, in general, that a part of a negative spectrum does not necessarily coincide with
bound states. By definition of the ground-state energy, the state |Ψ(m/2) cannot lead for 〈Ψ(m/
2)|H|Ψ(m/2) a numerical value lower than  That is

(5)

we note that the interaction part V of the Hamiltonian H in (2) is not explicitly dependent on m:

(6)

Substituting (6) into the right-hand side of (2), we can rewrite (3) as

(7)

By using (7), replace m by 2m we obtain

(8)

From (2) and (6), we may also rewrite the Hamiltonian as

(9)
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The extreme right-hand side of the inequality (3) then leads to

(10)

Multiply both sides of (10) by 2, to obtain

(11)

From [9], we obtain the lower for the ground-state energy of N bosons:

(12)

where Zmax corresponds to the nucleus of having the charge.
Replace m by 2m to obtain

(13)

An adaptation of the Schwinger bound [10] for matter without exclusion in two
dimensions, then leads to

(14)

by using, in the process, that due to the bose character of the N particles, they may all be put in
the lowest energy level which accounts for the N›1 factor on the right-hand side of the inequality.

From (11), (13) and (14), we obtain

(15)

where, from the normalization condition

∫d2x➝ρ2(x➝) = N (16)

Deflation of matter without exclusion principle
To investigate the deflation of matter, we are interested in theexpression which gives

the probability of finding all the negatively charged particles within the circle of radius R let x➝

denote the position (in two dimensions) of a negatively charged particle relative, for example, to
the center of mass of the nuclei. Then clearly for the probability of the negatively charged
particles to lie within such a circle, let  if lines within a circle of radius R and = 0
otherwise. We have
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(17)

where in the last inequality, we have used Holderûs inequality, to obtain

(18)

where  and

(19)

with AR denoting the area of a circle of radius
From (17), we obtain

(20)

and from (15), we obtain the following bound

(21)

where a0 = h2/me2 is the Bohr radius and 
Substitute (21) into the right-hand side of the equalities (20), to obtain

(22)

From (22), we then have the main result of this paper :

(23)

This will be used in the next section to obtain a lower bound to measure of the extension of
matter.

Non-zero lower Bound for a Measure of the Extension of Matter
As a measure of the extension of matter, we introduce the expectation value :

(24)

Now we use the fact that
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(25)

and

(26)

From (19), (24) and (26) we then the bounds

(27)

Upon optimizing the left-hand side of the above inequality over R, we get

(28)

Leading to

(29)

Substitute (29) into the right-hand side of inequality (26), we obtain the explicit non-zero lower
bound

(30)

Conclusion and Discussion
From the main result of this paper, (23), it leads to the unescapable conclusion

that necessity for a non-vanishing probability of having the negatively charged particles
within an area AR of circle, the corresponding radius R, cannot shrink faster than  for
large N (N → ∞), since otherwise the left-hand side of (23) would go to infinity and would
be in contradiction with the finite upper bound on its right-hand side, thus establishing the
above stated result. This relationship between N and R above show that matter without the
exclusion principle in two dimensions will deflate into a condensed high-density phase when
we put more and more this matter together, and lead to say that çsystem is unstableé. This is
regarding to a deflating Dyson states [1]: çThe assembly of any two macroscopic objects
would release energy comparable to that of an atomic bomb...é
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Methods similar to the ones developed above can use to study the localizability and
instability of other quantum mechanical systems. We note that the inequality in (23) is sufficient
to reach such a conclusion but cannot establish the actual deflation of such matter. This
formidable problem will be attempted in a future report.
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