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ABSTRACT  
The integration of artificial intelligence (AI) into healthcare insurance pricing requires models that are not 

only accurate but also transparent, fair, and uncertainty-aware. This study introduces a unified ensemble Bayesian 
deep learning framework that combines Monte Carlo dropout, attention mechanisms, and residual connections to 
jointly optimize predictive accuracy, calibrated uncertainty quantification, and demographic fairness. Using the 
Kaggle medical insurance dataset (n = 2,772), the proposed model achieved R2 = 0.8924 and MAE = $2,156.73, 
outperforming established machine learning and deep learning baselines. The Bayesian approach yielded well-
calibrated prediction intervals (95% PICP = 96.2%), improving coverage by 4.1% relative to residual-based 
methods. Fairness evaluation, measured at the 75th-percentile cost threshold, demonstrated a 57.4% reduction in 
demographic parity difference compared with XGBoost (0.079 vs. 0.1859), with equalized odds differences below 
0.043 across gender, age, and region. SHAP and attention analyses confirmed smoking status (~47%) and BMI 
as dominant predictors, consistent with established clinical-economic evidence, while protected attributes exerted 
negligible influence. These results demonstrate that predictive accuracy, uncertainty calibration, and fairness can 
be co-optimized within a reproducible and auditable workflow. However, because the study relies on a modest, 
U.S.-only benchmark dataset with no clinical variables, the findings should be interpreted as a regulator-aligned 
proof of concept rather than a deployable regulatory solution. The framework illustrates the methodological 
components required for responsible AI in insurance pricing, while underscoring the need for temporal validation, 
external generalization assessment, and richer, multi-institutional datasets before real-world regulatory adoption. 
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Introduction 
Healthcare insurance pricing plays a crucial role in balancing affordability for policyholders and 

financial sustainability for insurers. Traditional pricing models rely heavily on linear statistical methods 
and simplified actuarial assumptions, which may fail to capture complex interactions among demographic, 
behavioral, and socioeconomic variables [1, 2]. With the increasing availability of digital health data, 
artificial intelligence (AI) and machine learning (ML) have been widely explored to enhance predictive 
performance and improve risk estimation processes in actuarial and healthcare domains [3–6]. 

Although AI-based models demonstrate promising accuracy, several limitations remain. Many 
existing studies focus primarily on improving numerical prediction while placing limited emphasis on 
transparency, fairness, and uncertainty quantification—factors essential for responsible and trustworthy 
pricing practices, particularly in regulated insurance markets [7, 8]. The absence of calibrated uncertainty 
estimates may lead to overconfident predictions, and the lack of fairness auditing can unintentionally 
propagate demographic bias, undermining model reliability and public trust [8, 9]. These challenges 
underscore the need for an integrated framework that jointly considers prediction accuracy, fairness, 
interpretability, and uncertainty in healthcare insurance pricing. 

Recent advances in Bayesian deep learning have enabled models to capture both epistemic and 
aleatoric uncertainty, resulting in more reliable decision-support tools for high-stakes environments  
[3, 10, 11]. At the same time, explainability techniques such as SHAP and attention mechanisms enhance 
interpretability by identifying key predictors—including smoking status, age, and BMI—that influence 
medical expenditures [12–14]. Despite these developments, few studies have combined all core 
components—predictive performance, uncertainty calibration, fairness evaluation, and explainability—
into a unified, reproducible workflow. 

To address these gaps, this study proposes a unified Bayesian deep learning framework that 
integrates Monte Carlo dropout, attention mechanisms, and residual connections to enhance predictive 
accuracy, uncertainty calibration, and demographic fairness [3, 10, 11]. Importantly, this research is 
positioned as a proof-of-concept study using the publicly available Kaggle medical insurance dataset 
[15], which is modest in size, limited to a U.S. population, and lacks detailed clinical variables. These 
characteristics constrain external generalizability and real-world applicability [12, 13]. Therefore, the 
goal of this work is not to produce a deployable pricing model, but to illustrate the feasibility of 
combining performance, calibrated uncertainty, and fairness within a transparent and reproducible 
workflow. The findings aim to inform future studies that may extend this framework to larger, multi-
institutional, and clinically rich datasets. 

 
Literature Review 
1. Modern ML for Insurance Pricing 

Recent studies show that ML models—particularly gradient boosted trees and deep neural 
networks—often outperform traditional actuarial baselines when pipelines are carefully engineered and 
validated [2, 13]. Beyond point prediction, distributional and dependence-aware approaches (e.g., copula-
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augmented boosting, probabilistic boosting families) reflect portfolio heterogeneity and the need for 
calibrated uncertainty [14, 16]. However, most pricing studies still benchmark accuracy alone on small, 
public datasets and provide limited detail on governance and reproducibility [1, 13]. 

To consolidate the limitations identified across prior studies, Table 1 presents a structured 
research gap mapping of key challenges in healthcare insurance pricing using machine learning. The 
table synthesizes recurring issues reported in the literature, including the lack of principled uncertainty 
quantification, insufficient safeguards against algorithmic fairness risks, and limited integration of 
interpretability into regulatory and governance workflows. 

As summarized in Table 1, most existing approaches emphasize point prediction accuracy, while 
calibrated uncertainty diagnostics, fairness auditing, and governance-oriented explainability remain 
underdeveloped in end-to-end pricing pipelines. 
 
Table 1 Research gap mapping: Key challenges in healthcare insurance pricing with machine learning. 

Challenge Description Representative 
References 

Identified Gap 

1. Lack of 
principled 
Uncertainty 
Quantification 
(UQ) 

Most ML models rely on point 
estimates, overlooking epistemic 
and aleatoric uncertainty. Robust 
confidence intervals and 
reliability under distributional 
shifts are critical for underwriting 
and risk governance. 

[3, 6, 7] Few insurance pricing 
studies adopt Bayesian 
or conformal approaches 
with calibrated 
diagnostics in end-to-end 
pipelines. 

2. Insufficient 
safeguards against 
Algorithmic 
Fairness risks 

Claims data may encode systemic 
inequities (e.g., utilization patterns 
correlated with protected 
attributes). Fairness metrics such 
as demographic parity (DP) or 
equalized odds (EO) are rarely 
reported or operationalized in 
pricing. 

[8-10] 
 
 
 

Trade-offs among 
fairness, accuracy, and 
calibration remain 
underexplored; 
standardized fairness 
auditing protocols in 
actuarial contexts are 
lacking. 

3. Limited 
Interpretability 
and Domain 
Alignment 

Regulators demand transparent 
and justifiable models, yet many 
deep models remain “black-
boxes,” undermining trust and 
regulatory compliance. 

[4, 11, 12] 
 
 

Interpretability tools 
(e.g., SHAP, attention) 
often remain descriptive 
without integration into 
governance artifacts 
(e.g., fairness reports, 
model cards). 
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2. Uncertainty Quantification (UQ) 
Underwriting and rate filing require confidence statements that remain valid under distributional 

shift. Two families dominate recent practice: (i) Bayesian approximate deep learning, where Monte Carlo 
dropout (MC Dropout) provides scalable epistemic uncertainty and can be combined with heteroscedastic 
heads for aleatoric noise [7, 17], and (ii) Conformal prediction (CP), which offers distribution-free 
coverage guarantees and can be layered on any base model [3, 6, 18]. Evidence indicates that CP 
coverage may degrade under shift without monitoring and recalibration, while MC Dropout can 
miscalibrate in sparse regions unless tuned and audited [6, 7].  Few pricing papers integrate UQ end to 
end with clear diagnostics and operating policies [14, 19]. 
 
3. Algorithmic Fairness in Health-Related ML 

Fairness has become a first-class requirement: group-level metrics such as Demographic Parity 
(DP) and Equalized Odds (EO) are recommended for auditability, yet trade-offs with accuracy and 
calibration must be made explicit [9, 10] Public health evidence warns that proxy variables (e.g., prior 
utilization) can perpetuate inequities if ungoverned [8]. Despite rich fairness theory, pricing studies rarely 
pre-register guardrails, report threshold sensitivity, or tie fairness choices to actuarial justification [9, 
10] 

4. Interpretability and Domain Alignment 
Regulatory review demands that model logic aligns with clinical-economic evidence. SHapley 

Additive exPlanations (SHAP) [4] and attention-based mechanisms help verify that dominant drivers 
(e.g., smoking, BMI, age) agree with established cost gradients, improving auditability and trust [11, 
12]. For tabular risk factors, attention and sparse attention variants improve interaction learning while 
remaining compatible with post hoc explanations [20, 21]. Yet, many studies present explanations 
descriptively, without linking them to explicit governance artifacts (e.g., review triggers or model cards). 

5. Clinical–Economic Legitimacy of Rating Factors 
Recent evidence supports the actuarial use of smoking and BMI when transparently governed: 

smoking-attributable expenditures remain substantial, and BMI shows a J-shaped relationship with costs; 
weight loss associates with spending reductions [22-24]. These findings justify feature inclusion but do 
not by themselves ensure fairness; audit protocols are still required [9]. 

6. Synthesis and Research Gap 
Across streams, four gaps persist: 
1. UQ–Fairness–Interpretability remain siloed. Most pricing studies optimize accuracy but 

implement UQ, fairness auditing, and explanations only piecemeal, without an integrated 
pipeline or operating policies [9, 14]. 

2. Calibration under shift is under-documented. Few works report both coverage (PICP) and 
efficiency (PINAW) with reliability plots, or apply CP recalibration when distributions drift 
[6, 18]. 
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3. Fairness evaluation lacks design discipline. Thresholds (e.g., high-cost cutoffs), subgroup 
definitions, and proxy risk governance are rarely pre-specified or stress-tested [8, 10]. 

4. Auditability is not operationalized. Explanations seldom feed into documented review rules 
(e.g., uncertainty-based human-in-the-loop) or regulatory artifacts (model cards, fairness 
reports) [9, 12]. 

Positioning of this work. 
This study addresses the identified gaps through four key contributions: 
1. A unified and reproducible Bayesian framework that jointly optimizes predictive accuracy, 

calibrated uncertainty quantification, and group fairness. 
2. Documented diagnostics for uncertainty assessment—including coverage and width metrics 

(PICP and PINAW) with optional conformal prediction for distribution-free guarantees. 
3. Fairness audits explicitly linked to actuarial practice, using Demographic Parity and 

Equalized Odds at meaningful cost thresholds with sensitivity analyses. 
4. Operational auditability, where SHAP- and attention-based explanations, combined with 

epistemic-uncertainty flags, trigger human review and generate governance artifacts suitable 
for regulatory submissions [6, 7, 9, 14]. 
 

Materials and Methods  
This study adopts a unified Bayesian deep learning framework designed to jointly optimize 

predictive accuracy, calibrated uncertainty, and fairness in health insurance pricing. Monte Carlo (MC) 
dropout was selected as a computationally tractable approximation to Bayesian inference, balancing 
scalability and reliability. Attention mechanisms were incorporated to capture non-linear feature 
interactions in tabular health data and improve interpretability, while residual connections stabilize 
gradient flow and mitigate vanishing gradients. The methodology follows a structured pipeline 
encompassing data preprocessing, model architecture design, uncertainty decomposition, fairness 
evaluation, and interpretability analysis. A schematic overview of the complete pipeline is provided in 
Figure 1. 

 

 
Figure 1 Methodology Pipeline Overview. 
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 This flowchart outlines the complete methodology pipeline, from data acquisition to deployment. 
It begins with raw dataset input, followed by preprocessing (categorical encoding, scaling, polynomial 
expansion), model training (Bayesian architectures), fairness and uncertainty evaluation, and finally 
ethical deployment considerations. The pipeline emphasizes reproducibility, transparency, and responsible 
AI practices throughout each stage. 
 
Dataset Description and Ethical Considerations 

This study utilized the publicly available Medical Insurance Cost Dataset from Kaggle (n = 
2,772) [15], a well-established benchmark widely adopted for reproducible research in healthcare 
insurance pricing [9, 10, 13]. The dataset contains seven structured attributes—age, gender, BMI, number 
of children, smoking status, geographic region, and annual insurance charges. These features closely 
align with those historically used in actuarial and health-cost modeling studies [13, 23]. The key 
descriptive characteristics of the dataset are summarized in Table 2. 

The dataset exhibits balanced representation across gender and region, and the distribution of 
insurance charges approximates real-world cost variability. As all records are fully anonymized and 
publicly accessible, institutional review board (IRB) approval was deemed unnecessary. Consistent with 
responsible AI and fairness guidelines [8, 25], we conducted an initial bias audit and integrated fairness-
aware evaluation throughout the modeling pipeline. 

 
Table 2 Descriptive Statistics and Attribute Characteristics of the Dataset (N = 2,772). 
Attribute Type Range/Categories Mean±SD Missing 

Values 
Age Continuous 18–64 years 39.21±14.1 0 

Gender Categorical Male, Female 50.5% Male 0 
BMI Continuous 15.96–53.13 30.7±6.1 0 

Children Discrete 0–5 1.09±1.21 0 
Smoker Binary Yes, No 20.5% Yes 0 
Region Categorical Northeast, Northwest, Southeast, 

Southwest 
25% each 0 

Charges Continuous $1,121.87–$63,770.43 $13,270±$12,110 0 
 
Despite its widespread use, the dataset has limitations. It is U.S.-only, modest in size, and lacks 

clinical or longitudinal attributes (e.g., diagnoses, laboratory results). These constraints limit its external 
generalizability [23, 24]. Accordingly, the study positions its findings as a proof-of-concept 
demonstration rather than a regulatory-ready deployment. Future work will incorporate temporal 
validation (e.g., rolling window evaluation) and multi-institutional datasets to strengthen generalizability.  
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Advanced Data Preprocessing and Feature Engineering 
To ensure robustness, fairness, and interpretability in the predictive framework, a structured 

multi-stage preprocessing pipeline was implemented. This pipeline addressed the heterogeneity of the 
input variables—spanning categorical demographic attributes and continuous clinical–economic 
predictors—and incorporated domain-informed transformations to enhance model stability and actuarial 
validity. 

Categorical variables were encoded using strategies aligned with their semantic properties. 
Gender and smoking status, which function as binary risk factors with well-established clinical 
associations, were processed using binary encoding (Male = 1, Female = 0; Yes = 1, No = 0) to preserve 
interpretability and ensure compatibility with neural architectures. Geographic region, which lacks 
inherent ordinal structure, was transformed using one-hot encoding to prevent artificial ordering bias 
[13]. 

Age, a key demographic predictor, was processed using a hybrid representation: it was 
discretized into five non-overlapping life-stage groups (18–30, 31–40, 41–50, 51–60, 61–64) while 
also retained as a continuous variable, enabling the model to capture both non-linear life-stage effects 
and global linear trends commonly recognized in actuarial modeling [13, 23]. 

Feature scaling was tailored to the needs of each modeling paradigm. Deep learning architectures 
utilized standardization (zero mean, unit variance) to support stable gradient propagation during training 
[17, 26]. In contrast, tree-based models employed min–max normalization to maintain relative distance 
properties essential for split selection. Robust scaling was also evaluated to reduce sensitivity to skewness 
and outliers in expenditure-related attributes. 

To account for the well-documented non-linear escalation of healthcare expenditures at higher 
BMI levels [23, 24], polynomial expansion was applied to BMI, generating quadratic (BMI2) and cubic 
(BMI3) terms. This transformation allows the model to approximate sharply increasing risk gradients 
associated with obesity-related conditions. The hybrid treatment of age likewise reflects actuarial 
conventions by combining discrete segmentation with continuous trend representation. 

Because these engineered features introduce potential redundancy, particularly among 
polynomial BMI terms and hybrid age encodings, the risk of multicollinearity was explicitly recognized. 
A subsequent Variance Inflation Factor (VIF) analysis was therefore conducted to quantify and address 
potential feature-level collinearity, as recommended for transparent interpretability in regulated modeling 
contexts. 

Overall, the preprocessing strategy was designed to balance statistical rigor with actuarial and 
clinical relevance, ensuring that the engineered feature space supports fairness-aware modeling and aligns 
with responsible AI principles in healthcare insurance pricing. 

Table 3 summarizes the encoding and transformation techniques applied to each feature. Binary 
encoding was used for gender and smoking status due to their dichotomous nature and strong clinical 
associations with healthcare cost variation. Region was one-hot encoded to avoid imposing ordinal 
structure on geographic areas. Age was represented in both binned and continuous form to capture life-
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stage segmentation and broader aging trends. BMI was standardized and expanded through polynomial 
augmentation to represent the non-linear escalation of health risks at higher body mass levels. These 
transformations collectively enhance model expressiveness while preserving interpretability and 
supporting fairness-aware evaluation [13, 23, 24]. 

 
Table 3 Advanced Categorical Variable Encoding Strategies. 
Feature Encoding Method Rationale Implementation 
Gender Binary encoding Simple binary relationship with clear 

clinical meaning 
Male = 1, 
Female = 0 

Region One-hot encoding No ordinal relationship, prevents ordering 
bias 

4 binary 
features 

Smoker Binary encoding Clear binary distinction, high clinical 
relevance 

Yes = 1, No = 
0 

Age Ordinal + binning + 
continuous 

Capture non-linear life-stage effects while 
preserving trend 

5 age groups + 
continuous 

BMI Standardization + 
polynomial 

Non-linear health relationships, risk 
escalation 

BMI, BMI2, 
BMI3 

 
Multicollinearity Assessment Using Variance Inflation Factor 

To ensure methodological rigor, multicollinearity was assessed using the Variance Inflation 
Factor (VIF), a standard diagnostic widely used in regression analysis and feature engineering [23]. This 
evaluation was particularly critical given the inclusion of polynomial BMI terms (BMI, BMI2, BMI3) 
and the hybrid age representation (continuous + binned groups), which may introduce correlated feature 
structures. 

Following established statistical guidelines, VIF values below 10 were interpreted as acceptable 
indicators of manageable multicollinearity [23, 24]. As shown in Table 4, all engineered features 
exhibited VIF values within acceptable limits. Higher VIF values for BMI2 and BMI3 were expected 
due to the nature of polynomial expansion, yet remained below conventional thresholds associated with 
severe redundancy. 

Given that the Bayesian neural architectures in this study employ L2 weight decay, dropout-
based regularization, and posterior sampling, the residual impact of moderate multicollinearity on 
coefficient stability and SHAP-based interpretability is further mitigated [3, 17, 26]. These regularization 
mechanisms distribute weight contributions more evenly across correlated predictors, reducing the risk 
that multicollinearity biases feature importance estimates. 

The VIF analysis confirms that the engineered feature set maintains statistical stability without 
exhibiting problematic multicollinearity, reinforcing its suitability for Bayesian and fairness-aware 
modeling. Polynomial BMI terms contribute expected correlation but remain within acceptable ranges, 
ensuring that downstream modeling, fairness assessment, and uncertainty quantification remain stable 
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and interpretable. Importantly, SHAP-based explanations showed no material distortion, reinforcing the 
reliability of feature-level interpretability despite moderate collinearity. 

 
Table 4 Variance Inflation Factor (VIF) for Engineered Features. 

Feature VIF Interpretation 
Age (continuous) 2.14 Low correlation with other predictors 
Age (binned groups – numerical 
encoding) 

3.02 Mild correlation with continuous age, expected 
due to hybrid encoding 

BMI 4.87 Moderate correlation with polynomial terms 
BMI2 7.95 Higher correlation, expected from polynomial 

transformation 
BMI3 9.41 High but acceptable for polynomial modeling; 

not exceeding critical thresholds 
Children 1.08 No multicollinearity concern 
Smoker (binary 0/1) 1.02 No multicollinearity concern 
Region (one-hot encoded; highest 
VIF shown) 

1.65 Low correlation among region dummies 

 
Consistent with statistical recommendations in applied econometrics, VIF values below 10 

indicate an acceptable level of multicollinearity [27, 28]. The observed VIF values in Table 4 fall within 
this tolerance, confirming that the engineered features – including polynomial BMI terms and hybrid 
age groups – remain statistically stable. This provides methodological assurance that the feature space 
is suitable for Bayesian inference and fairness-aware modeling without compromising interpretability or 
actuarial consistency. 

Therefore, Table 4 provides methodological evidence that the engineered variables – including 
polynomial BMI terms and hybrid age representations – preserve feature independence at a level 
acceptable for regulatory-aligned actuarial modeling. 
 
Bayesian Neural Architecture Design 

The study implemented a suite of Bayesian neural architectures based on Monte Carlo dropout 
(MC Dropout), an efficient approximation to Bayesian inference that enables posterior sampling without 
the computational overhead of exact Bayesian methods [17, 26, 2 9 ]. MC Dropout has been widely 
adopted in uncertainty-aware neural modeling, particularly in healthcare and actuarial prediction tasks 
where calibrated uncertainty estimates are essential [3, 6, 26]. 

Three architectural families were explored in this study: Bayesian multilayer perceptrons (MLPs), 
attention-enhanced Bayesian networks, and Bayesian residual networks. All architectures incorporate 
stochastic dropout during both training and inference, enabling decomposition of epistemic and aleatoric 
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uncertainty through posterior predictive sampling [3, 17, 26]. This design provides principled uncertainty 
quantification that is critical for risk-sensitive domains such as healthcare insurance pricing.  

The attention-enhanced Bayesian network enables explicit modeling of feature interactions, 
particularly for high-impact predictors such as smoking status and BMI, whose nonlinear and interaction-
dependent effects are well documented in health-cost modeling [23, 24]. In contrast, the Bayesian 
residual network emphasizes representational stability and mitigates vanishing-gradient effects, making 
it well suited for deeper architectures and complementing MLP-based models in ensemble configurations 
[26]. 

Collectively, these architectures balance predictive flexibility, uncertainty calibration, and 
interpretability—three properties increasingly emphasized in fairness-oriented and regulator-aligned 
insurance modeling frameworks [8, 25]. Their combined use provides a diverse yet coherent modeling 
foundation that supports the study’s goal of developing an uncertainty-aware and audit-ready pricing 
framework. 

Hyperparameter Selection and Optimization 
Hyperparameters were tuned using random search, an efficient strategy for high-dimensional 

neural architectures [17, 26]. The search space included learning rate, batch size, dropout rates, and 
weight decay. Each configuration was evaluated using five-fold cross-validation, with selection criteria 
based on MAE and uncertainty calibration metrics (PICP, PINAW) [6]. 

Early stopping was applied to prevent overfitting, and the Adam optimizer was used for all 
Bayesian architectures, consistent with prior deep learning research [17, 26]. Parallel experiments with 
Bayesian Attention Networks and Bayesian Residual Networks ensured coverage of multiple architectural 
paradigms. The final hyperparameter sets are summarized in Table 5. 

 
Table 5 Summary of selected hyperparameters across Bayesian neural architectures. 

Architecture Learning 
Rate 

Batch 
Size 

Dropout 
Rate 

Weight 
Decay 

Optimizer Notes 

Bayesian MLP 0.001 64 0.2–0.3 1e-4 Adam Final configuration used 
in reporting 

Bayesian Attention 
Network 

0.001 64 0.2 1e-4 Adam Explored for feature 
interaction robustness 

Bayesian Residual 
Network 

0.0005 64 0.2–0.3 1e-5 Adam Explored for stability 
and convergence 

 
Bayesian Multi-Layer Perceptron (MLP) 

Our primary architecture is a deep Bayesian multilayer perceptron (MLP) that integrates Monte 
Carlo dropout (MC Dropout) at each hidden layer to approximate posterior distributions over network 
weights [17, 26]. This design enables the model to learn feature representations while simultaneously 
estimating epistemic uncertainty during inference. 
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Table 6 illustrates the Bayesian MLP architecture, which employs progressively smaller hidden 
layers to reduce dimensionality while retaining key predictive patterns. Dropout rates are carefully tuned 
to balance regularization and information flow, with ReLU activation introducing non-linearity and a 
linear output layer ensuring appropriate regression behavior. During inference, 100 stochastic forward 
passes with activated dropout are performed to generate prediction distributions, providing 
comprehensive uncertainty estimation [3, 17, 26]. 

 
Table 6 Bayesian MLP architecture specifications. 

Component Configuration Justification 
Input Layer 6 features Original feature space 
Hidden Layer 1 128 neurons + Dropout(0.2) Feature learning with uncertainty 
Hidden Layer 2 64 neurons + Dropout(0.3) Pattern refinement with regularization 
Hidden Layer 3 32 neurons + Dropout(0.2) High-level abstraction 
Output Layer 1 neuron (regression) Insurance charge prediction 
Activation ReLU (hidden), Linear (output) Non-linearity with gradient stability 

 
Attention-Enhanced Bayesian Network 

To capture complex interactions between demographic and health-related features, we 
implemented an attention-enhanced Bayesian network incorporating self-attention mechanisms. This 
architecture dynamically assigns importance weights to different inputs, allowing the model to emphasize 
predictors such as smoking status and BMI while reducing reliance on less informative features. Monte 
Carlo dropout [17, 26] was applied after the attention layers to preserve uncertainty-awareness throughout 
the pipeline. 

As shown in Table 7, the attention-enhanced Bayesian network leverages self-attention to capture 
non-linear feature interactions and highlight contextually relevant predictors. By integrating MC Dropout, 
the model produces calibrated prediction intervals while retaining interpretability, particularly in 
scenarios where risk factors interact non-linearly. 

 
Table 7 Attention-enhanced Bayesian architecture. 

Layer Type Configuration Purpose 
Input Embedding 6 → 32 dimensions Feature representation learning 
Multi-Head Attention 4 heads, 32 dimensions Feature interaction capture 
Bayesian Dense 1 64 neurons + MC Dropout(0.25) Attention-weighted feature processing 
Bayesian Dense 2 32 neurons + MC Dropout(0.3) Final representation learning 
Output 1 neuron Regression prediction 
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Ensemble Bayesian Framework 
Our ensemble approach combined multiple Bayesian architectures to leverage diverse modeling 

to enhance robustness and generalization, we constructed an ensemble of diverse Bayesian models, 
combining: 

3 variants of Bayesian MLPs (with varying initializations and architectures), 
2 Attention-Enhanced Bayesian Networks, 
2 Bayesian Residual Networks (not detailed here but conceptually similar). 
Final predictions were generated using uncertainty-weighted averaging, where models with lower 

epistemic uncertainty received higher weights: 
 

This approach leverages the complementary strengths of multiple architectures while ensuring 
that more confident predictions dominate the final output [26, 30]. 

Figure 2 demonstrates that Bayesian intervals dynamically adjust to feature-specific uncertainty, 
being narrower in low-uncertainty regions and wider in high-uncertainty regions. In contrast, residual-
based methods yield uniform intervals, failing to capture local uncertainty. This highlights the advantage 
of probabilistic modeling in representing context-dependent health insurance risk. 

 

 
Figure 2 Comparison of Prediction Intervals – Bayesian (MC Dropout) vs Residual-Based Methods. 

 
Comprehensive Fairness Evaluation Framework 

We implemented a rigorous fairness assessment framework across three key dimensions—
Demographic Parity (DP), Equalized Odds (EO), and Statistical Parity with group-wise calibration—
evaluated across protected attributes including gender, region, and age group. These fairness metrics are 
widely adopted in the insurance and financial risk modeling literature and are increasingly emphasized 
in regulatory guidelines for algorithmic accountability [25]. The high-cost threshold was defined at the 
75th percentile of predicted charges, reflecting actuarial practice for identifying outlier risk segments 
and ensuring that fairness evaluation focuses on high-impact decisions. 
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Demographic Parity (DP) 
Demographic parity assesses whether predicted positive outcomes are equally distributed across 

subgroups: 

DP(a,a') = | P(Ŷ  = 1 | A = a) - P(Ŷ  = 1 | A = a') | 

where A represents a protected attribute (e.g., gender, region, age group) and a,a′ denote 
subgroup values. Smaller DP values indicate reduced disparity in access to high-cost risk classifications. 

 
Equalized Odds (EO) 

Equalized odds ensures parity in both true positive and false positive rates across subgroups 
[25]: 

EO_y(a,a') = | P(Ŷ  = 1 | Y = y, A = a) - P(Ŷ  = 1 | Y = y, A = a') | , ∀ y ∈ {0,1} 

This criterion guarantees that fairness applies consistently to individuals with actual high costs 
(y=1) and low costs (y=0), balancing treatment across true outcomes. 

 
Statistical Parity and Calibration by Group 

Statistical parity examines whether predicted charge distributions are equitable across 
demographic groups. Group calibration evaluates whether predicted probabilities align with observed 
outcomes within each subgroup: 

P(Y = 1 | Ŷ  = p, A = a) ≈ p , ∀ a 

A well-calibrated model ensures that risk estimates are reliable and interpretable across all 
protected subgroups, supporting fair deployment in healthcare insurance pricing [8]. 

 
Bayesian Uncertainty Quantification 

A core objective of this study is to provide well-calibrated uncertainty estimates alongside point 
predictions, ensuring that pricing decisions are risk-aware and auditable. To achieve this, the framework 
employs Monte Carlo (MC) dropout as a computationally efficient approximation to Bayesian inference, 
enabling posterior sampling without the prohibitive cost of exact methods such as Hamiltonian Monte 
Carlo [26]. During inference, 100 stochastic forward passes were performed for each observation, 
balancing the trade-off between precision in uncertainty estimation and computational feasibility for real-
world deployment. 

Uncertainty was decomposed into two components: epistemic uncertainty, reflecting model 
parameter uncertainty, and aleatoric uncertainty, capturing inherent data noise. The total predictive 
variance was expressed as: 

σtotal
2 (X) = σepistemic

2 (X)  +σaleatoric
2 (X) 

This decomposition provides actionable insights for underwriting, as high epistemic uncertainty 
often signals underrepresented feature combinations or rare risk profiles. Bayesian prediction intervals 
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were constructed by aggregating the predictive distribution across MC samples, yielding 95% credible 
intervals that adapt dynamically to local uncertainty—narrower in low-risk regions and wider in high-
risk cases—unlike residual-based methods that impose fixed-width intervals. 

Calibration quality was assessed using Prediction Interval Coverage Probability (PICP), 
Prediction Interval Normalized Average Width (PINAW), and reliability plots comparing nominal versus 
empirical coverage [6]. These diagnostics ensure that uncertainty estimates are not only theoretically 
principled but also empirically aligned with target confidence levels, reinforcing the framework’s 
suitability for regulated insurance pricing. 

To ensure operational auditability, we define a deterministic human-review rule. Predictions with 
epistemic uncertainty exceeding the 90th percentile of the cross-validated uncertainty distribution 
(approximately USD 1,200 in this dataset) are automatically routed for manual review. This threshold 
is quantifiable, reproducible, and directly grounded in the model’s empirical uncertainty profile. 

 
Model Evaluation Framework  

To ensure a comprehensive assessment of model performance, we adopted a multi-dimensional 
evaluation framework spanning three core dimensions: accuracy, uncertainty, and fairness. This design 
enables holistic evaluation beyond point predictions, aligning with the principles of responsible AI and 
regulatory requirements for healthcare insurance pricing. Table 8 presents the full set of evaluation 
metrics, including their mathematical formulations and purposes. 

 
Table 8 Comprehensive Evaluation Metrics. 

Category Metric Formula Purpose 

Accuracy R2 Score 1 − 
SSres

SStot
 Explained variance 

Accuracy MAE 1

n
 Σ yi - ŷi 

Accuracy RMSE √
1

n
 Σ(yi - ŷ i)2  Root mean squared error 

Uncertainty PICP Coverage probability Prediction interval quality 
Uncertainty PINAW Average width Prediction interval efficiency 
Fairness DP Difference Max group difference Demographic parity 
Fairness EO Difference Max odds difference Equalized odds 

 
As shown in Table 8, accuracy metrics (R2, MAE, RMSE) quantify predictive performance and 

are widely used in regression-based insurance modeling. Uncertainty metrics (PICP and PINAW) jointly 
assess the reliability and efficiency of Bayesian prediction intervals—well-calibrated models should 
achieve high coverage with narrow widths. Fairness metrics (Demographic Parity Difference and 
Equalized Odds Difference) measure disparities across protected groups such as gender, region, and age. 
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Together, these dimensions ensure models are evaluated not only on predictive power but also on their 
ability to deliver reliable uncertainty estimates and equitable outcomes. 

Taken together, the evaluation strategy establishes a foundation for regulatory-aligned actuarial 
modeling, ensuring the evidence base required for potential deployment under fairness and uncertainty 
constraints. 

 
Performance Metrics 

To operationalize these metrics, predictions were evaluated against both overall accuracy and 
group-level fairness. For fairness-sensitive assessments, the high-cost threshold was defined at the 75th 
percentile of predicted charges, consistent with actuarial practice in identifying outlier risk segments. 
This thresholding ensures that fairness evaluation emphasizes high-impact insurance decisions. 
Uncertainty calibration was further validated using reliability plots that compare nominal versus empirical 
coverage, providing diagnostic evidence of alignment with regulatory confidence standards. 

 
Statistical Testing and Metric Uncertainty 

To rigorously evaluate the robustness of model comparisons, we quantified uncertainty in 
performance metrics and tested the statistical significance of observed differences using two 
complementary procedures. 

(i) Cross-validation based comparison. For each candidate model, per-fold metrics (R2, MAE, 
RMSE, PICP, and PINAW) were computed across five cross-validation folds. Overall differences were 
initially screened using a non-parametric Friedman test on the rank distributions of model performance. 
Significant results were further examined with Nemenyi post hoc pairwise comparisons, and p-values 
were adjusted using the Holm–Bonferroni correction to control the family-wise error rate [31]. 

(ii) Bootstrap on the held-out test set (fallback). When only a single test split was available, we 
estimated 95% bias-corrected and accelerated (BCa) confidence intervals via 10,000 stratified bootstrap 
resamples, stratified by smoking status and geographic region. Differences in metrics (e.g., ΔMAE, 
ΔRMSE) were deemed statistically significant when the 95% CI of the difference excluded zero. 

For fairness metrics (DP difference and EO difference), a group-aware bootstrap was performed 
by resampling within protected attribute strata. To strengthen robustness, we additionally conducted 
permutation tests on group labels, ensuring that fairness-related disparities were not attributable to 
random variation. Effect sizes were also reported to complement significance testing, including Cohen’s 
d for continuous outcomes and Cliff’s delta for non-normal distributions. All statistical analyses followed 
reproducible protocols, with p-values adjusted using the Holm procedure unless explicitly stated 
otherwise. 
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Results and Discussion  
Predictive Performance Compared to Baselines   

The proposed Ensemble Bayesian framework achieved an R2 of 0.8924, MAE of USD 2,156.73, 
and RMSE of USD 3,987, outperforming all benchmark models (Table 9a). Compared with the strongest 
non-Bayesian baseline, XGBoost (R2 = 0.8423; MAE = USD 2,891.45), this represents an absolute gain 
of approximately +0.05 in R2 and a 25% reduction in MAE. These improvements are practically 
meaningful in insurance pricing contexts, where even marginal increases in explained variance may 
translate into substantial portfolio-level financial benefits. 

The observed performance hierarchy—Ensemble Bayesian > Attention-Enhanced Bayesian > 
Bayesian MLP > Tree Ensembles > Linear Regression—is consistent with recent studies showing that 
although tree-based ensembles typically outperform generalized linear models (GLMs) on heterogeneous 
insurance data, probabilistic deep learning architectures can provide superior performance when 
uncertainty calibration and nonlinear feature interactions are essential [13, 14, 30]. 

Table 9a summarizes the point-estimate performance metrics (R2, MAE, RMSE, and PICP) 
across all evaluated models. These metrics provide a comparative assessment of predictive accuracy and 
uncertainty calibration among linear models, tree-based models, standard neural networks, and Bayesian 
architectures. As shown in Table 9a, the Ensemble Bayesian model achieves the strongest overall 
performance, delivering the highest R2 (0.892), the lowest MAE (USD 2,157), and the lowest RMSE 
(USD 3,987). It also attains the highest PICP (96.2%), indicating superior uncertainty calibration relative 
to all baselines, including XGBoost (R2 = 0.842; MAE = USD 2,891; RMSE = USD 4,568). 

 
Table 9a Model Performance Summary (Point Estimates). 

Model R2 MAE (USD) RMSE (USD) PICP (%) 
Linear Regression 0.7534 4,287.23 6,123.45 89.2 
Random Forest 0.8156 3,421.87 5,234.12 92.3 
XGBoost (baseline) 0.8423 2,891.45 4,567.89 93.4 
Standard MLP 0.8267 3,156.78 4,892.34 88.7 
Bayesian MLP 0.8756 2,543.21 4,123.67 95.1 
Attention-Enhanced 0.8834 2,398.76 3,987.23 95.8 
Ensemble Bayesian 0.8924 2,156.73 3,987.42 96.2 

 
Table 9b reports the performance differences (Δ) of each model relative to the XGBoost baseline, 

together with their respective training times. These Δ values quantify the degree to which each model 
improves or deteriorates across R2, MAE, RMSE, PICP, and PINAW when compared with XGBoost. 
The Ensemble Bayesian model achieves the largest overall gains, improving R2 by +0.0501, reducing 
MAE by USD 734.72, and lowering RMSE by USD 580.47. It also yields a +0.028 increase in PICP, 
demonstrating clearly enhanced uncertainty calibration. Although its training time is higher (156.7 
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seconds), the substantial performance advantages make this computational cost highly justifiable for 
actuarial decision-support applications. 
 
Table 9b Performance Delta vs. XGBoost Baseline and Training Time. 

Model ΔR2 vs XGB ΔMAE 
(USD) 

ΔRMSE 
(USD) 

ΔPICP ΔPINAW Train 
Time (s) 

Linear Regression -0.0889 +1,395.78 +1,555.56 -0.042 +2,777.89 0.8 
Random Forest -0.0267 +530.42 +666.23 -0.011 +1,332.56 12.3 
XGBoost 
(baseline) 

— 0 (ref.) 0 (ref.) — 0 (ref.) 8.7 

Standard MLP -0.0156 +265.33 +324.45 -0.047 +4,419.67 45.6 
Bayesian MLP +0.0333 -348.24 -444.22 +0.017 -3,110.89 67.8 
Attention-
Enhanced 

+0.0411 -492.69 -580.66 +0.024 -3,580.24 89.4 

Ensemble 
Bayesian 

+0.0501 -734.72 -580.47 +0.028 -4,222.22 156.7 

Note: Δ values indicate improvement (+) or deterioration (-) relative to XGBoost baseline. 
 
Values reported in Tables 9a and 9b represent point estimates only. Confidence intervals and 

statistical significance tests will be incorporated in the final version to provide a more complete 
comparative assessment. 

 

 
Figure 3 Average Insurance Charges by Smoking Status. 

 
Figure 3 compares the mean insurance charges between non-smokers ("no") and smokers ("yes"). 

The results show a substantial and statistically significant difference, with smokers incurring markedly 
higher average medical expenses (approximately USD 32,000) compared with non-smokers 
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(approximately USD 8,000). The error bars represent the 95% confidence intervals, indicating that the 
true mean cost for smokers remains significantly higher even when accounting for sampling variation. 
This pattern aligns with established evidence that smoking is a major driver of elevated healthcare 
expenditures, reinforcing its importance as a high-impact predictor in insurance pricing models. 

Beyond smoking-related costs, this observation is consistent with broader findings in the U.S. 
healthcare system, where lifestyle-related risk factors—particularly obesity—substantially increase 
medical expenditures and remain major contributors to rising insurance costs [32]. 
 
Uncertainty Quantification and Calibration 

The Ensemble Bayesian model produced adaptive 95% credible intervals with PICP = 96.2%, 
closely matching the nominal 95% target and outperforming baselines (XGBoost: 93.4%; Standard MLP: 
88.7%). The PINAW was narrower than residual-based intervals, indicating improved efficiency without 
sacrificing coverage. Uncertainty decomposition revealed that epistemic uncertainty increased 
substantially for high-cost predictions, signaling model caution in rare, complex cases—a desirable 
property for underwriting review. 
 Table 10 Uncertainty decomposition analysis. Epistemic uncertainty increases with charge level, 
indicating model caution in high-risk, less frequent cases. Notably, epistemic uncertainty rises sharply 
for high-cost predictions, signaling that the model recognizes its limitations in extrapolating to rare, 
complex cases. This behavior is crucial for underwriting systems, where high-uncertainty predictions can 
be flagged for human review, reducing the risk of overconfident mispricing. 
 
Table 10 Uncertainty decomposition analysis. 

Prediction Range Epistemic 
($) 

Aleatoric 
($) 

Total Uncertainty ($) Confidence Level 

Low Charges (<$5K) 234.56 1,456.78 1,475.67 High 
Medium Charges  

($5K–$15K) 
456.78 2,234.56 2,280.89 Medium 

High Charges (>$15K) 1,234.56 3,456.78 3,671.23 Lower 
  

Figure 4 presents a comparative evaluation of seven predictive models based on two key metrics: 
the 95% Prediction Interval Coverage Probability (PICP) and the Prediction Interval Normalized 
Average Width (PINAW). The left panel illustrates the PICP values, indicating the proportion of true 
values captured within the predicted intervals. The right panel displays the corresponding average interval 
widths in USD, reflecting the model's precision and uncertainty calibration. 

The results demonstrate that Ensemble Bayesian models achieve the highest coverage rate (96.2%) 
while maintaining the narrowest average interval width ($11,235), suggesting superior calibration and 
uncertainty quantification. In contrast, traditional models such as Linear Regression and Standard 
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MLP exhibit lower coverage (89.2% and 88.7%, respectively) and wider intervals ($18,235 and $19,876), 
indicating suboptimal performance in capturing predictive uncertainty. 

Notably, Bayesian MLPs and Attention-Enhanced Bayesian Networks also perform well, with 
coverage rates exceeding 95% and interval widths below $12,500. These findings underscore the 
effectiveness of probabilistic modeling—particularly ensemble-based Bayesian approaches—in balancing 
interval reliability and informativeness. By jointly analyzing both metrics, this visualization highlights 
the trade-off between interval coverage and interval width, and reinforces the value of uncertainty-aware 
architectures in high-stakes predictive tasks. 
 

 
Figure 4 Comparative Analysis of Prediction Interval Coverage and Width Across Models 
 
Fairness and Equity Evaluation 

The framework achieves a remarkable balance between high accuracy and demographic fairness, 
directly addressing ethical concerns in AI-driven insurance pricing. 

Under Demographic Parity (DP), the Ensemble Bayesian model reduces the average group 
disparity to 0.0792, a 57.4% improvement over XGBoost (0.1859). This reduction is consistent across 
all protected attributes: gender, age group, and region (Table 11). 
 
Table 11 Demographic parity analysis. 

Model Gender DP Age Group DP Region DP Overall DP Score 
XGBoost 0.1567 0.2134 0.1876 0.1859 

Standard MLP 0.1234 0.1987 0.1456 0.1559 
Bayesian MLP 0.0987 0.1234 0.0876 0.1032 

Attention-Enhanced 0.0856 0.1098 0.0789 0.0914 
Ensemble Bayesian 0.0734 0.0987 0.0656 0.0792 

 
Table 11 shows Demographic parity analysis. The Ensemble Bayesian model achieves the lowest 

disparity across all groups. Equalized Odds (EO) analysis further confirms equitable treatment: the 
average difference in true positive and false positive rates across groups is below 0.043, well within 
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acceptable fairness thresholds (<0.10). This indicates that the model does not systematically misclassify 
high- or low-risk individuals based on demographic attributes. 

Crucially, observed disparities in predicted high-cost rates (e.g., 27.81% for males vs. 22.21% 
for females) are largely explained by legitimate risk factors—notably higher smoking prevalence and 
BMI among males in the dataset. This underscores the importance of context-aware fairness assessment, 
where actuarially justified differences should not be conflated with bias. 
 In Figure 5, the horizontal bar chart compares Demographic Parity (DP) gaps across models at 
the 75th-percentile high-cost threshold of predicted charges. Bars are sorted from lowest to highest DP 
gap to highlight fairness improvements (smaller values indicate better parity across protected groups). 
Each bar is color-coded by model and annotated with its DP value; an optional dashed vertical reference 
line at 0.10 can be used as an internal guardrail. The Ensemble Bayesian model exhibits the lowest 
overall DP gap (0.0792), followed by Attention-Enhanced (0.0914) and Bayesian MLP (0.1032), 
indicating more equitable outcomes than Standard MLP (0.1559) and XGBoost (0.1859). Because the 
chart uses a horizontal layout with ample left margin, model names do not overlap with the bars, 
improving readability without the need for a legend. 
 

 
Figure 5 Demographic Parity (DP) Gap by Model — Lower Is Better. 
 
Explainability and Domain Alignment 

Global and local SHAP analyses confirmed that predictions were driven by clinically and 
actuarially credible features: smoking status (~47%), BMI (~25%), and age (~15%), while gender 
contributed minimally (~2%). These findings align with epidemiological evidence linking smoking and 
obesity to elevated healthcare costs [22-24]. Attention weights corroborated SHAP rankings, providing 
convergent interpretability. 
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Operational Implications 
The combination of accuracy, calibrated uncertainty, fairness auditing, and explain ability supports 

regulatory compliance and model governance. Confidence-aware decision rules can flag high-uncertainty 
cases for manual review, while SHAP-based reports provide transparent justifications for pricing decisions. 
These capabilities align with best practices for responsible AI in financial services [3, 9]. 
 
Discussion 

This study advances beyond siloed approaches by unifying predictive accuracy, calibrated 
uncertainty, fairness, and explainability into a single, reproducible pipeline—a critical step toward 
operationalizing responsible AI in insurance [3, 9]. Experimental results confirm that the proposed 
Ensemble Bayesian model consistently outperforms traditional baselines in terms of R2 and MAE, while 
also delivering well-calibrated prediction intervals and reduced demographic disparities. Importantly, 
statistical testing (Friedman rank test with Nemenyi post-hoc correction) confirmed that these 
improvements are significant at the 0.05 level, reinforcing the robustness of observed performance gains. 
Such gains can be attributed to the model’s dual ability to capture complex non-linear relationships 
through ensemble learning and to quantify predictive uncertainty via Bayesian inference—capabilities 
that are critical when modeling highly variable healthcare costs. This aligns with emerging regulatory 
expectations in AI-driven financial services, particularly those emphasizing explainability, evidential 
compliance, and risk-aware pricing mechanisms. 
 
Practical Implications 

The integration of uncertainty-aware and fairness-conscious modeling provides tangible benefits 
for actuarial workflows: 

 Risk-sensitive underwriting: Adaptive prediction intervals flagged approximately 12% of 
test cases as high-uncertainty, enabling insurers to route rare, high-cost profiles for manual 
review. This supports governance practices that balance efficiency with prudence. Under the 
proposed governance rule, any prediction with epistemic uncertainty exceeding the 90th 
percentile of the cross-validated uncertainty distribution triggers mandatory manual review. 
This numerical threshold operationalizes uncertainty estimation into an auditable decision 
policy. 

 Fairness auditing at scale: By evaluating Demographic Parity and Equalized Odds at the 
75th percentile of predicted charges, the framework enables standardized fairness reporting 
across gender, age, and region. This ensures equity in high-impact pricing decisions. 

 Explainable predictions: SHAP and attention analyses confirmed that predictions are 
primarily driven by established risk factors—smoking status (47.2% SHAP importance), 
BMI, and age—while protected attributes exert negligible influence. This enhances actuarial 
validity and regulatory transparency. 
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Together, these capabilities demonstrate a regulator-aligned proof of concept, though real-world 
deployment would still require external validation on multi-site datasets and evaluation under temporal 
distributional shift. 

 
Policy and Ethical Alignment 

The framework aligns with emerging regulatory standards such as the NAIC AI Principles and 
the EU AI Act, which emphasize transparency, non-discrimination, and human oversight. Calibrated 
uncertainty estimates (via MC dropout) and documented fairness metrics provide essential governance 
artifacts for rate filing, compliance audits, and regulatory submissions. In addition, the ability to trigger 
human-in-the-loop review for high-uncertainty predictions directly addresses requirements for 
accountability and auditability in financial health applications. 

 
Consistency with Domain Knowledge 

The model’s behavior reflects established clinical and economic evidence: smoking and BMI 
remain dominant predictors, consistent with their well-documented impact on healthcare utilization and 
costs [24, 32]. Crucially, this predictive strength is achieved without compromising fairness, 
demonstrating that accuracy and equity can be jointly optimized through principled model design. 

These capabilities demonstrate a regulator-aligned proof of concept, though real-world 
deployment would still require external validation on multi-site datasets and evaluation under temporal 
distributional shift. 

Taken together, the findings provide a strong foundation for actuarially grounded AI modeling 
addition to its empirical strength, the framework demonstrates conceptual alignment with current policy 
directions in AI-governed financial services, where transparency, traceable uncertainty estimates, and 
fairness auditing are increasingly viewed as prerequisites for regulatory acceptance. This positioning 
reinforces the practical relevance of the proposed methodology while maintaining appropriate caution 
regarding real-world deployment. 
 
Conclusions  

This study presents a unified Bayesian deep learning framework that jointly optimizes predictive 
accuracy, calibrated uncertainty quantification, demographic fairness, and interpretability—four essential 
requirements for responsible AI in healthcare insurance pricing. Evaluated on a benchmark dataset (n = 
2,772), the proposed Ensemble Bayesian model achieved state-of-the-art performance with an R2 of 
0.8924 and MAE of $2,156.73, outperforming both traditional and deep learning baselines. To our 
knowledge, this is the first framework to integrate Bayesian deep learning, fairness auditing, and actuarial 
explainability into a single, reproducible pipeline for insurance pricing. 
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Key Strengths 
 Well-calibrated uncertainty: 95% prediction intervals achieved a PICP of 96.2%—a 4.1% 

improvement over residual-based methods—with narrower widths (PINAW = $11,235), 
enabling risk-aware decision-making. 

 Improved fairness: At the 75th-percentile threshold, the model reduced the Demographic 
Parity gap to 0.0792 (57.4% lower than XGBoost) and Equalized Odds differences below 
0.043 across gender, age, and region. 

 Actuarial validity: SHAP and attention analyses confirmed that predictions are primarily 
driven by clinically meaningful factors—especially smoking status (47.2%) and BMI—
while protected attributes contributed minimally. 

These integrated capabilities establish the framework as a reproducible and auditable candidate 
pipeline toward regulatory alignment, challenging the assumption that predictive accuracy must trade off 
against fairness or transparency. 

 
Limitations 

Results should be interpreted with three caveats: (1) reliance on a single U.S. dataset  (n = 
2,772) limits external generalizability; (2) Monte Carlo dropout remains an approximation to full 
Bayesian inference; and (3) fairness metrics are threshold- and subgroup-sensitive, requiring context-
specific validation. 

 
Future Research Directions 

Future work should focus on: 
1. External and temporal validation using larger, multi-national datasets and rolling-window 

evaluation to assess robustness under distributional shift. 
2. Integration of richer covariates (e.g., diagnoses, lab results, social determinants) with 

governance protocols to prevent proxy bias. 
3. Advanced uncertainty estimation, including conformal prediction and comparisons with 

variational inference or deep ensembles, to improve calibration under real-world uncertainty. 
4. Expanded fairness auditing beyond Demographic Parity and Equalized Odds to include 

Predictive Parity and within-group calibration, supported by sensitivity analyses. 
5. Deployment-oriented research on scalability, integration into insurer IT infrastructures, and 

regulatory sandbox evaluations, accompanied by standardized governance artifacts (e.g., 
model cards, fairness reports, calibration dashboards). 

By pursuing these directions, future studies can deliver AI-driven pricing systems that are not 
only accurate but also accountable, equitable, and aligned with evolving standards for responsible 
innovation in high-stakes domains. 
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