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ABSTRACT 
 Alzheimer's disease (AD) remains a significant unmet medical challenge. This study investigates 
the repurposing of FDA-approved drugs for AD using computational methods. From 4,046 screened 
drugs, 341 candidates were retained based on pharmacokinetic criteria, including blood–brain barrier 
permeability and gastrointestinal absorption. Molecular docking identified nandrolone phenylpropionate, 
atovaquone, and cholecalciferol as top candidates for mTOR, and nandrolone phenylpropionate, 
ethynodiol diacetate, and drospirenone for p75 neurotrophin receptor (p75NTR). Molecular dynamics 
simulations assessed the stability of these protein-ligand complexes, revealing that atovaquone and 
ethynodiol diacetate exhibited the highest stability with mTOR and p75NTR, respectively. Despite the 
promising binding properties of steroid-based drugs, their systemic side effects necessitate further 
structural modifications. This study demonstrates the feasibility of drug repurposing for AD and 
underscores the importance of computational approaches in accelerating the discovery of new therapeutic 
options. 
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Introduction 
Alzheimer's disease (AD) represents a significant challenge in neurodegenerative research, 

primarily characterized by progressive cognitive decline and memory loss, severely impacting patients' 
quality of life and imposing a significant burden on caregivers and healthcare systems [1]. The 
pathogenesis of AD has been widely explained through two dominant hypotheses: the amyloid hypothesis 
and the tau hypothesis. The amyloid hypothesis posits that AD is initiated by the overproduction and 
accumulation of amyloid-beta (Aβ) peptides in neurons, disrupting normal brain function and leading to 
neurodegeneration [2]. Conversely, the tau hypothesis suggests that the excessive phosphorylation of tau 
proteins results in unstable microtubules, forming neurofibrillary tangles that impede normal neuronal 
activity [3]. Despite extensive research, no approved therapies have effectively modified these 
pathological features or altered disease progression. Current therapeutic approaches for AD primarily 
focus on symptomatic relief, with acetylcholinesterase inhibitors and NMDA receptor antagonists being 
the main classes of drugs used. These treatments temporarily alleviate cognitive symptoms by enhancing 
neurotransmitter function but do not halt or reverse the underlying neurodegenerative processes [1, 2]. 
The lack of disease-modifying therapies highlights the urgent need for novel strategies to prevent 
neuronal loss and brain atrophy in AD [4]. 

One promising target in AD research is the mammalian target of rapamycin (mTOR), a protein 
complex vital for numerous cellular processes and metabolic functions [5]. The activation of mTOR 
inhibits autophagy, leading to the aggregation of amyloid proteins and the phosphorylation of tau 
proteins, which are central to AD pathology [6, 7]. Consequently, the development of mTOR inhibitors 
presents a promising avenue for AD treatment. 

Another potential therapeutic target is nerve growth factor (NGF), a polypeptide hormone that 
influences neuronal growth and survival [8]. The NGF receptor (NGFR) is crucial for the development 
and maintenance of cholinergic neurons, which are significantly affected in AD [9]. Studies suggest that 
NGF can inhibit mTOR activity, thereby potentially reducing the accumulation of Aβ peptides and the 
hyperphosphorylation of tau proteins [10, 11]. By modulating mTOR activity, NGF not only supports 
neuronal survival but also mitigates key pathological processes associated with both the amyloid and tau 
hypotheses [12]. 

The traditional drug development process faces challenges such as evolving regulatory 
requirements, which increase research costs and extend development timelines [2]. An alternative strategy 
is drug repurposing, which involves identifying new therapeutic uses for existing drugs [14]. This 
approach leverages the established safety profiles of these drugs, reducing the risk of research failure, 
shortening development time, and lowering costs [13, 14]. Computational methods, such as molecular 
docking and molecular dynamics, enable the rapid assessment of drug-target interactions, identifying 
candidates that may inhibit Aβ production or tau phosphorylation. 

This study employs molecular docking to screen FDA-approved drugs using computer 
simulations to predict their interactions with mTOR and NGFR. In addition to molecular docking, 
computational pharmacokinetic predictions are utilized to assess the ability of these drugs to cross the 
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blood-brain barrier (BBB). This step is crucial in narrowing down the list of potential drugs by ensuring 
that only those capable of effectively reaching the brain are considered for further analysis [15]. By 
integrating knowledge from chemistry, biochemistry, computer-aided drug design, pharmacology, and 
medical sciences, this research aims to identify potential drugs for repurposing to treat AD in the elderly. 
This comprehensive approach not only enhances the efficiency of identifying viable therapeutic 
candidates but also contributes significantly to the development of disease-modifying therapies. 
 
Materials and Methods 

In this study, we explored the potential of repurposing existing drugs for Alzheimer's disease 
(AD) treatment using a computational approach. The method involved several key steps, as summarized 
in Figure 1. 

 
Figure 1 Research methodology using computational software for repurposing in Alzheimer's disease 
treatment. 

 
Collection and preparation of FDA-approved drugs  

The sample for the in silico study comprises all FDA-approved drugs, totaling 4,046 drugs, 
sourced from the FDA Drug Database from https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm? 
event=browseByLetter.page&productLetter=A&ai=0. The chemical structures of these drugs were drawn 
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using ChemDraw Professional 16.0 and converted into the Simplified Molecular Input Line Entry System 
(SMILES) format for subsequent computational analysis. 
 
Computational pharmacokinetic analysis   

The SMILES files of all drug structures were subjected to computational pharmacokinetic 
analysis using SwissADME. This tool calculates key physicochemical properties of small drug molecules, 
including molecular weight (MW), number of heavy atoms, number of rotatable bonds, number of 
hydrogen bond acceptors (HA), number of hydrogen bond donors, polar surface area (PSA), lipophilicity, 
and water solubility. Additionally, it evaluates crucial pharmacokinetic properties such as gastrointestinal 
absorption, blood-brain barrier (BBB) permeability, P-glycoprotein substrate properties, and cytochrome 
P450 (CYP) inhibitors properties (CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4) [16]. 

To select drugs for the next steps, several criteria were applied: adherence to Lipinski's rules 
(ensuring the drugs are orally active), the ability to pass the blood-brain barrier (necessary for targeting 
the brain in AD treatment), good gastrointestinal absorption, non-substrate properties for P-glycoprotein 
(to avoid drug efflux), and absence of cytochrome P450 (CYP) inhibitors properties (CYP1A2, 
CYP2C19, CYP2C9, CYP2D6, CYP3A4) [17]. These criteria ensure that only drugs with favorable 
pharmacokinetic profiles and the potential for effective central nervous system activity are considered 
for further analysis. 
 
Molecular docking analysis  

Target proteins associated with AD in this study, the mammalian target of rapamycin (mTOR) 
and nerve growth factor receptors (NGFR), were obtained from the Protein Data Bank (PDB) with the 
respective codes 1FAP and 3BUK [18, 19]. To prepare these crystal structures for docking simulations, 
all water molecules, solvents, and co-crystallized ligands were meticulously removed to ensure a clean 
and accurate environment for further analysis. 

The calculated binding free energy and inhibitory constant of the selected drugs were analyzed 
using AutoDock 4.2.6 software [20]. Initially, each drug candidate was subjected to energy minimization 
to attain the most stable conformations, reducing potential steric clashes and internal strain. Ligand 
energy minimization was performed using Chem3D Professional 10.0 with the MM2 force field to 
eliminate steric clashes and obtain optimal conformations prior to docking. 

Docking grids were defined to cover the known or predicted functional binding pockets of each 
target [9, 21]. Grid maps were generated with AutoGrid4 using a spacing of 0.375 Å and box dimensions 
of 60×60 × 60 points, ensuring adequate coverage of active site residues. The Lamarckian Genetic 
Algorithm (LGA) was employed with the following parameters: population size = 150, maximum energy 
evaluations = 2.5×10⁶, maximum generations = 27,000, mutation rate = 0.02, crossover rate = 0.8, 
elitism = 1, and local search iterations = 300 with a pseudo-Solis & Wets algorithm (local search 
frequency = 0.06). For each ligand–target pair, 100 independent docking runs (ga_run = 100) were 
performed to ensure statistical robustness. Docked conformations were clustered at an RMSD tolerance 
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of 2.0 Å. The most populated cluster (Cluster 1) was considered the dominant binding mode, with its 
mean binding energy (ΔG ± SD) and occupancy (%) recorded. The lowest binding energy (best ΔG) 
and corresponding inhibition constant (Ki) were also reported. 

Reference ligands (Sirolimus for mTOR; NSC49652 for NGFR; Donepezil as a clinically 
approved drug for AD) were used to benchmark our docking–MD pipeline by comparing their scores 
and stability metrics with those of the screened candidates. These controls provided pharmacological 
context and internal validation of parameterization and analysis workflows. 
 
Molecular dynamic simulation   

The top four docked complexes were selected for molecular dynamics (MD) simulations, 
conducted with GROMACS 5.1.4 (www.gromacs.org/) [22]. The CHARMM36 force field was applied 
to the protein and membrane, while the ligands were parameterized using the Charmm General Force 
Field (CGenFF). Van der Waals interactions were handled using a dual cutoff approach, with inner and 
outer cutoffs set at 10 Å and 12 Å, respectively. The Particle–Mesh–Ewald (PME) method was used 
for calculating long-range electrostatic interactions. Hydrogen atoms were constrained using the LINear 
Constraint Solver (LINCS) algorithm, and periodic boundary conditions were implemented. A time step 
of 2 fs was used throughout the simulations [23]. 

Initially, a 5000-step energy minimization was executed using the steepest-descent method to 
rectify steric clashes and eliminate any bad contacts in the initial structure, ensuring the system's stability. 
This was followed by equilibration under a constant volume and temperature (NVT) ensemble, with the 
temperature set to 310K using the Berendsen thermostat. During this phase, position restraints were 
applied to the protein and ligand to allow the solvent to relax around the fixed solutes. This NVT 
equilibration was carried out for 100 ps with a time step of 2 fs. Subsequently, the system underwent 
further equilibration under constant pressure and temperature (NPT) ensemble conditions. The Berendsen 
barostat was employed to maintain the pressure at 1 atm, allowing the system's density to stabilize. The 
same position restraints were kept, and this NPT equilibration also lasted for 100 ps with a time step 
of 2 fs.  

After equilibration, production MD simulations were performed as independent replicates. 
Starting from the same equilibrated structure after NPT equilibration, different random velocity seeds 
(e.g., 11111, 22222, and 33333) were applied, yielding three independent 10-ns trajectories for each 
protein–ligand complex. This approach provided statistically independent replicates to enhance 
reproducibility. Trajectory analyses included root-mean-square deviation (RMSD) of protein and ligands, 
root-mean-square fluctuation (RMSF) of protein residues, radius of gyration (Rg), ligand–protein 
hydrogen bonds, and minimum distance between ligand and protein. 
 
Statistical analysis   
 For each descriptor (ligand RMSD, protein RMSD, radius of gyration, and minimum distance), 
values from the equilibrated window (3–10 ns) were averaged per replicate and summarized as mean ± 
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SD across three independent runs. Trajectory data from 3–10 ns of the production phase were selected 
for statistical comparison, excluding the initial equilibration period (0–2 ns) during which the system 
undergoes conformational adjustments. This strategy ensured that only equilibrated dynamics were 
analyzed, thereby providing a reliable representation of protein–ligand stability and allowing statistically 
robust comparisons among ligands [24]. Normality was assessed using the Shapiro–Wilk test (all groups, 
p > 0.05), and homogeneity of variances was examined using the Brown–Forsythe test. When 
assumptions were satisfied, one-way ANOVA with Tukey’s post-hoc test was applied; if variance 
heterogeneity was detected, Welch’s ANOVA with Games–Howell post-hoc test was used as a robust 
alternative. All analyses were conducted in GraphPad Prism 9 with statistical significance set at p < 0.05. 
 
Results and discussion 

Drug repurposing, also known as drug repositioning, has gained significant attention in recent 
years due to its numerous advantages over traditional drug development processes [13]. One of the 
primary benefits is the substantial reduction in cost and time required to bring a drug to market. Since 
repurposed drugs have already been tested for safety and efficacy, they can bypass many early-stage 
clinical trials, which significantly shortens the development timeline and cuts research and development 
expenses [15]. In this study, the computational screening of FDA-approved drugs for potential 
repurposing in AD treatment involved rigorous analysis and multi-step methodologies.  

The study focused on identifying drugs capable of interacting with critical targets: mammalian 
target of rapamycin (mTOR) and nerve growth factor receptor (NGFR). Molecular docking was utilized 
to predict binding affinities, and pharmacokinetic analyses ensured that drugs could cross the blood-
brain barrier (BBB) and possessed favorable absorption profiles. This approach identified several 
promising candidates that exhibit strong interactions with mTOR and p75NTR of NGFR, essential 
proteins implicated in AD pathology. 
 
Computational pharmacokinetic analysis of FDA-approved drugs 

From an initial pool of 4,046 FDA-approved drugs, combination drugs, radioactive drugs, and 
inorganic drugs were excluded. This filtering process resulted in 1,538 remaining drugs, which were 
then subjected to comprehensive pharmacokinetic analysis using SwissADME. The criteria for selecting 
suitable drugs for AD treatment development were prioritized as follows: 564 drugs from the initial 
1,538 had the ability to cross the blood-brain barrier (BBB); 356 of these 564 drugs were not substrates 
for P-glycoprotein; 339 of these 356 drugs followed Lipinski's rule of five; and 341 of these 343 drugs 
demonstrated good gastrointestinal absorption. Following this rigorous analysis, 341 drugs were 
identified as suitable candidates for further development in this study. These drugs were further evaluated 
for their binding affinity to target proteins, as detailed in Tables 1 and 2. 
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Table 1 Molecular docking analysis of the top 10 drugs with the best-calculated binding free energy 
for the protein 1FAP. 

 Drug name 
Best predicted ΔG  

(kcal/mol)a 
Ki  

(nM)b 
Cluster 1 mean 

ΔG±SD (kcal/mol)c 

Cluster 1 
occupancy 

(%)d 

1 
Nandrolone 
phenpropionate 

-11.53 3.52 -11.11 63 

2 Atovaquone -11.15 6.67 -11.12 100 
3 Cholecalciferol -10.42 23.12 -9.78 44 
4 Nefazodone -10.34 26.48 -9.47 13 
5 Rimonabant -10.10 39.74 -10.32 5 
6 Cyproheptadine -10.01 46.24 -10.01 100 
7 Droperidol -10.00 46.56 -9.32 14 
8 Quinestrol -9.87 57.97 -9.88 3 
9 Rimexolone -9.82 63.41 -9.78 72 
10 Ethynodiol diacetate -9.81 64.10 -9.52 87 
11 Sirolimuse -9.82 63.71 -9.24 58 
12 Donepezilf -7.90 1,590 -3.79 18 

a ΔG values are expressed in kcal/mol and were obtained using AutoDock 4.2.6 with the Lamarckian 
Genetic Algorithm (LGA). 
b Ki values were empirically estimated from binding free energies as implemented in AutoDock. 
c Cluster 1 mean ΔG±SD was calculated from all docking poses grouped within an RMSD tolerance of 
2.0 Å. 
d Cluster 1 occupancy indicates the proportion of docking runs (out of 100) that converged into the 
dominant binding cluster. 
e Sirolimus was used as a reference mTOR inhibitor for comparative docking. 
f Donepezil was included as a clinically approved Alzheimer’s drug reference. 
 
Molecular docking analysis of selected drugs to mTOR 

The mTOR protein, one of the target proteins for AD drug development in this study, was 
obtained from the Protein Data Bank with the code 1FAP [18]. The SMILES files of all 341 selected 
drugs were studied for their binding affinity to the target protein, evaluating binding free energy and 
dissociation constant (Kd) using AutoDock 4.2.6 software. The binding site sphere radius of ligand-target 
interaction was fixed at 60 Å, covering the serine/threonine-protein kinase domain of the mTOR protein, 
based on previous studies focusing on critical residues TYR26, ARG42, LYS44, PRO45, MET49, 
VAL55, HIS87, SER125, ARG126, ARG132, and ARG199 [21]. 
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Table 2 Molecular docking analysis of the top 10 drugs with the best-calculated binding free energy 
for the protein 3BUK. 

 Drug name 
Best predicted ΔG  

(kcal/mol)a 
Ki  

(nM)b 

Cluster 1 mean 
ΔG±SD  

(kcal/mol)c 

Cluster 1 
occupancy 

(%)d 

1 
Nandrolone 
phenpropionate 

-12.04 1.51 -11.33 62 

2 Ethynodiol diacetate -10.93 9.78 -10.54 77 
3 Drospirenone -10.77 12.80 -10.50 100 
4 Nefazodone -10.68 14.96 -9.68 12 
5 Azelastine -10.68 14.77 -10.38 30 
6 Progesterone -10.62 16.47 -10.54 44 
7 Flavoxate -10.39 24.38 -10.27 4 
8 Norgestimate -10.32 27.13 -10.03 56 
9 Testolactone -10.28 29.27 -10.26 78 
10 Sulfinpyrazone -10.19 34.20 -10.16 12 
11 NSC49652e -9.93 52.72 -9.18 57 
12 Donepezilf -7.42 3,610 -7.12 7 

a ΔG values are expressed in kcal/mol and were obtained using AutoDock 4.2.6 with the Lamarckian 
Genetic Algorithm (LGA). 
b Ki values were empirically estimated from binding free energies as implemented in AutoDock. 
c Cluster 1 mean ΔG±SD was calculated from all docking poses grouped within an RMSD tolerance of 
2.0 Å. 
d Cluster 1 Occupancy indicates the proportion of docking runs (out of 100) that converged into the 
dominant binding cluster. 
e NSC49652 was used as a reference p75 neurotrophin receptor (p75NTR) agonist for comparative 
docking. 
f Donepezil was included as a clinically approved Alzheimer’s drug reference. 

 
The docking analysis against mTOR revealed that nandrolone phenpropionate maintained the 

strongest binding affinity with a best ΔG of –11.53 kcal/mol (Ki = 3.52 nM) and a cluster mean ΔG 
of –11.11±SD kcal/mol, although its occupancy was moderate (63%). Atovaquone, despite having a 
slightly weaker predicted ΔG (–11.15 kcal/mol), showed 100% cluster occupancy, indicating a highly 
consistent binding mode across docking runs. In contrast, cholecalciferol displayed a best ΔG of –10.42 
kcal/mol with lower cluster stability (occupancy 44%). 

Interestingly, nefazodone, ranked fourth, exhibited a binding affinity (ΔG = –10.34 kcal/mol, 
Ki = 26.48 nM) comparable to the top three drugs, but its cluster occupancy was only 13%, suggesting 
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multiple alternative binding poses. Other compounds, including cyproheptadine (–10.01 kcal/mol), 
showed 100% occupancy, implying a highly stable conformation despite weaker binding affinity. 

For comparative references, sirolimus (rapamycin), a known mTOR inhibitor, showed a binding 
energy of –9.82 kcal/mol with moderate occupancy (58%), while donepezil, a clinically approved 
Alzheimer’s drug, bound weakly (ΔG = –7.9 kcal/mol, Ki = 1,590 nM) with low stability (occupancy 
18%). These results validate the docking protocol by providing pharmacological benchmarks: sirolimus 
performed as expected within the inhibitory range, and donepezil confirmed its limited role in targeting 
mTOR. 

In this study, the binding modes of the top 3 drugs with the best binding affinities to the mTOR 
protein were analyzed. These drugs include nandrolone phenylpropionate, atovaquone, and 
cholecalciferol, which displayed strong interactions and favorable binding free energies. Nandrolone 
phenylpropionate binding mode included a key hydrogen bond with VAL55, π-π T-shaped interactions 
with residues TYR26 and PHE2039, and π-alkyl interactions with residues TYR2105, TRP59, and 
TRP2101 (Figure 2a). Atovaquone exhibited several notable interactions with the mTOR protein. 
Conventional hydrogen bonds were observed with residues GLU54, VAL55, and ILE56, indicating 
strong polar interactions. Additionally, π-π T-shaped interactions were identified with residues PHE2108 
and TYR2105. Alkyl interactions were also significant, involving LEU2031 and PHE2108, while  
π-alkyl interactions were noted with residues TRP2101, PHE2039, and PHE2108 (Figure 2b). 
Cholecalciferol primarily interacted with the mTOR protein through alkyl and π-alkyl interactions. The 
key residues involved included LEU2031, PHE46, TYR2105 and TRP59 for alkyl interactions, and 
TRP2101, PHE2108, ILE56, and VAL55 for π-alkyl interactions (Figure 2c). 

Binding mode analysis indicated that the ligands aligned with key residues in the mTOR binding 
pocket, supporting their stability. Nandrolone phenylpropionate and atovaquone align in the same 
conformation, which is favorable for interaction with mTOR, resulting in the strongest binding free 
energies. In contrast, cholecalciferol does not align in the same conformation, indicating that this 
alignment is crucial for achieving strong binding affinities. 
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Figure 2 Binding modes of the top three drugs with the mTOR protein (1FAP): a) Nandrolone 
phenpropionate, b) Atovaquone, c) Cholecalciferol. Green dashed lines represent hydrogen bonds 
(Discovery Studio Visualizer). 
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Molecular docking analysis of selected drugs to p75 neurotrophin receptor  
The Neurotrophin-3 (NT-3) and p75 neurotrophin receptor (p75NTR) complex, was obtained 

from the Protein Data Bank with the code 3BUK [19]. The binding affinities of 341 selected drugs to 
the p75NTR were analyzed using AutoDock 4.2.6 software. The binding affinities were evaluated by 
considering the key amino acids involved in the binding process. These amino acids were reported within 
broad ranges, ensuring a comprehensive analysis of the drug interactions [9].  

Docking results against the p75NTR receptor similarly identified nandrolone phenpropionate as 
the top binder (ΔG = –12.04 kcal/mol, Ki = 1.51 nM), with a cluster mean ΔG of –11.33 kcal/mol and 
occupancy of 62%. Ethynodiol diacetate and drospirenone followed closely, with ΔG values of –10.93 
kcal/mol and –10.77 kcal/mol, respectively, both showing stable clustering (occupancies of 77% and 
100%). Among the additional candidates, nefazodone again demonstrated strong binding (–10.68 
kcal/mol), although its cluster occupancy remained low (12%). azelastine and progesterone also ranked 
within the top six, but their cluster occupancies were moderate (30% and 44%). 

As expected, the reference agonist NSC49652 bound with moderate affinity (ΔG = –9.93 
kcal/mol, Ki = 52.72 nM) and an occupancy of 57%, consistent with its reported role as a p75NTR 
modulator. In comparison, donepezil showed a weak binding profile (ΔG = –7.42 kcal/mol, Ki = 3,610 
nM, occupancy 7%), further confirming its lack of direct activity on this receptor. 

Nandrolone phenpropionate shows strong interactions with p75NTR primarily through hydrogen 
bonds and hydrophobic interactions. The structural visualization indicates that nandrolone phenpropionate 
forms hydrogen bonds with key residues such as LYS71. These hydrogen bonds are crucial for stabilizing 
the ligand within the binding pocket. Additionally, nandrolone phenpropionate engages in π-alkyl 
interactions with residues like ILE73, CYS183, and MET125. These hydrophobic interactions further 
stabilize the ligand, ensuring a specific and robust binding to the protein (Figure 3a). 

Ethynodiol diacetate interacts with p75NTR through a variety of interactions. It forms key 
hydrogen bonds with ASP128 and THR127, which are critical for maintaining the ligand within the 
active site. These hydrogen bonds provide significant stabilization, ensuring the ligand is securely 
anchored. Additionally, the attractive charge interaction with ASP128 enhances the binding affinity, 
reinforcing the stability of the ligand-protein complex. The combination of hydrogen bonding and 
electrostatic interactions provides a robust mechanism for the binding of ethynodiol diacetate, indicating 
its potential efficacy as an inhibitor (Figure 3b). 

Drospirenone also shows strong interactions with p75NTR, facilitated through several key 
interactions. It forms significant hydrogen bonds with residues such as ASP104 and LYS71, which play 
a vital role in securing the ligand within the binding site. The hydrophobic interactions with residues 
like LEU173, ILE48, and VAL56 further enhance the binding stability. Additional carbon hydrogen 
bonds contribute to the overall stability and specificity of the ligand binding (Figure 3c). 
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Figure 3 Binding modes of the top three drugs with the p75 neurotrophin receptor (p75NTR, 3BUK) 
a) Nandrolone phenpropionate, b) Ethynodiol diacetate, c) Drospirenone. Green dashed lines represent 
hydrogen bonds (Discovery Studio Visualizer). 
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Molecular dynamics analysis of selected drugs 
The molecular dynamics (MD) simulations provided critical insights into the stability and 

conformational behavior of the top-ranking compounds against both the mTOR protein (1FAP) and the p75 
neurotrophin receptor (p75NTR, 3BUK). These analyses extended beyond docking predictions by evaluating 
the dynamic stability of ligand–protein complexes using multiple descriptors, including root mean square 
deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond formation, 
and minimum protein–ligand distance. 

All datasets passed the Shapiro–Wilk normality test (p = 0.30–0.95). Most systems also satisfied 
homogeneity of variance by Brown–Forsythe test; however, one case (cholecalciferol with mTOR) showed 
significant variance heterogeneity. Accordingly, Welch’s ANOVA with Games–Howell correction was applied 
for that dataset, whereas standard one-way ANOVA with Tukey’s post-hoc test was used elsewhere. These 
adjustments ensured that all parametric analyses were valid. 

For the mTOR complexes (1FAP), atovaquone emerged as the most stable candidate, maintaining 
the lowest RMSD values (~0.1 Å) throughout the 10 ns trajectory. Cholecalciferol and nandrolone 
phenpropionate exhibited moderate stability (~0.2 Å), whereas sirolimus, included as a reference mTOR 
inhibitor, showed slightly higher deviations but remained within 0.25 Å. By contrast, nefazodone displayed 
pronounced instability, with fluctuations reaching 0.5 Å, while donepezil, a clinically approved AD drug used 
as a reference, demonstrated only modest stability (Figure 4a-b). Ligand RMSD analyses supported these 
findings, showing that atovaquone and sirolimus remained firmly anchored within the binding pocket, while 
nefazodone and donepezil fluctuated more substantially (Figure 5a-b). 

 

 
Figure 4 Protein RMSD of mTOR (1FAP) and p75NTR (3BUK) complexes during 10 ns MD simulations. 
(a, c) RMSD trajectories of 1FAP and 3BUK in complex with selected ligands. (b, d) Average RMSD values 
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(3–10 ns). Bars represent mean±SD. Statistical significance was determined by one-way ANOVA with 
Tukey’s post-hoc test (*p < 0.05, **p < 0.01, ***p < 0.001), or by Welch’s ANOVA with Games–Howell 
correction when variance homogeneity was violated (e.g., cholecalciferol in mTOR). Absence of asterisks 
indicates no significant difference. 
 

 
Figure 5 Ligand RMSD of mTOR (1FAP) and p75NTR (3BUK) complexes during 10 ns MD simulations. 
(a, c) RMSD trajectories of 1FAP and 3BUK in complex with selected ligands. (b, d) Average ligand RMSD 
values (3–10 ns). Bars represent mean±SD. Statistical significance was determined by one-way ANOVA with 
Tukey’s post-hoc test (*p <0.05, **p < 0.01, ***p < 0.001), or by Welch’s ANOVA with Games–Howell 
correction when variance homogeneity was violated (e.g., cholecalciferol in mTOR). Absence of asterisks 
indicates no significant difference. 

 
The RMSF profiles revealed that most ligands induced minimal flexibility across the mTOR backbone, 

with only minor fluctuations localized to loop regions. Atovaquone and sirolimus complexes displayed 
consistently lower fluctuations, while nefazodone and donepezil induced higher local flexibility, consistent with 
their reduced stability (Figure 6a). Analysis of the radius of gyration (Rg) confirmed that the overall compactness 
of the protein was preserved across all simulations (~3.0–3.5 nm). Atovaquone and sirolimus maintained the 
most compact structures, while nandrolone phenpropionate and cholecalciferol caused slight increases in protein 
flexibility (Figure 7a-b). 

Hydrogen bond profiling further differentiated these ligands: nefazodone consistently formed the highest 
number of hydrogen bonds (3–5 on average), reflecting strong polar interactions despite its unstable RMSD. 
Sirolimus also formed stable hydrogen bonds (~2–3) (Figure 8a). In contrast, atovaquone, nandrolone 
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phenpropionate, cholecalciferol, and donepezil formed fewer than 2 H-bonds on average. Statistical analysis 
(Tukey’s multiple comparisons test) confirmed that nefazodone and sirolimus had significantly higher H-bond 
counts compared with other ligands (p < 0.01) (Figure 8b). 

Minimum distance analyses supported ligand binding stability. Atovaquone maintained the closest 
average contact (~0.16 nm), significantly tighter than nefazodone (~0.22 nm) and nandrolone phenpropionate 
(~0.21 nm). Sirolimus also displayed stable interactions (~0.18 nm). Statistical comparisons indicated that 
atovaquone and sirolimus are bound significantly closer to the active site than nefazodone and cholecalciferol 
(p < 0.05) (Figure 9a-b). 

 

 
Figure 6. Protein RMSF of mTOR (1FAP) and p75NTR (3BUK) complexes during 10-ns MD 
simulations. (a) RMSF per residue of 1FAP in complex with selected ligands. (b) RMSF per residue 
of 3BUK in complex with selected ligands. 
 

 
Figure 7. Radius of gyration (Rg) of mTOR (1FAP) and p75NTR (3BUK) complexes during 10 ns 
MD simulations. (a, c) Rg trajectories of 1FAP and 3BUK in complex with selected ligands. (b, d) 
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Average Rg values (3–10 ns). Bars represent mean ± SD. Statistical significance was determined by 
one-way ANOVA with Tukey’s post-hoc test (*p < 0.05, **p < 0.01, ***p < 0.001), or by Welch’s 
ANOVA with Games–Howell correction when variance homogeneity was violated (e.g., cholecalciferol 
in mTOR). Absence of asterisks indicates no significant difference. 
 

 
Figure 8. Hydrogen bonding profiles of mTOR (1FAP) and p75NTR (3BUK) complexes during 10 ns MD 
simulations. (a, c) Number of ligand–protein hydrogen bonds in 1FAP and 3BUK complexes. (b, d) Average 
hydrogen bond counts (3–10 ns). Bars represent mean±SD. Statistical significance was determined by one-way 
ANOVA with Tukey’s post-hoc test (*p < 0.05, **p < 0.01, ***p < 0.001). Absence of asterisks indicates no 
significant difference. 
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Figure 9. Minimum distance between ligands and proteins in mTOR (1FAP) and p75NTR (3BUK) complexes 
during 10 ns MD simulations. (a, c) Minimum distance trajectories of 1FAP and 3BUK in complex with selected 
ligands. (b, d) Average minimum distances values (3–10 ns). Bars represent mean±SD. Statistical significance 
was determined by one-way ANOVA with Tukey’s post-hoc test (*p < 0.05, **p < 0.01, ***p < 0.001), or by 
Welch’s ANOVA with Games–Howell correction when variance homogeneity was violated (e.g., cholecalciferol 
in mTOR). Absence of asterisks indicates no significant difference. 
 

For the p75NTR complexes (3BUK), drospirenone and ethynodiol diacetate exhibited the most 
stable dynamic behavior. Protein RMSD values for these complexes remained below 0.07 Å, while 
ligand RMSD confirmed their stable anchoring. Nandrolone phenpropionate displayed larger deviations 
(~0.10–0.15 Å), and nefazodone and donepezil showed intermediate stability. The reference agonist 
NSC49652 also remained stable, validating the simulation protocol (Figure 4c-d). 

The RMSF analysis showed minimal perturbation across backbone residues, although nandrolone 
phenpropionate and donepezil induced slightly higher fluctuations in surface loops compared with 
drospirenone and ethynodiol diacetate, which displayed the lowest flexibility (Figure 6b). Rg profiles 
indicated stable receptor compactness around 2.1–2.2 nm across all ligands, with drospirenone showing 
slightly elevated Rg (~2.7–2.8 nm), suggesting transient global flexibility (Figure 7c-d). 

Hydrogen bonding analysis revealed that nefazodone and NSC49652 formed the greatest number 
of hydrogen bonds (~1.5–2 on average), while drospirenone and ethynodiol diacetate maintained fewer 
but consistent H-bonds (~0.5–1). Nandrolone phenpropionate displayed irregular hydrogen bonding, 
consistent with its unstable RMSD (Figure 8c-d). Minimum distance analysis confirmed that all ligands 
remained in close contact with p75NTR (0.18–0.21 nm), with drospirenone and ethynodiol diacetate 
maintaining the closest average distances, reinforcing their stable binding conformations (Figure 9c-d). 
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The MD simulations collectively indicated that atovaquone is the most promising repurposing 
candidate for mTOR inhibition, while drospirenone and ethynodiol diacetate emerged as the most stable 
binders for p75NTR. In contrast, nefazodone, despite its strong docking score and hydrogen-bonding 
capacity, exhibited inconsistent stability across both proteins. The inclusion of sirolimus and NSC49652 
as reference ligands further validated the reliability of our docking–MD workflow, while donepezil 
consistently showed weak binding, confirming its limited relevance for direct targeting of mTOR or 
p75NTR in AD. 

Beyond individual drug performance, our results reveal that the top four candidates for both 
targets share significant core steroidal or triterpenoid scaffolds, with the exception of atovaquone (a 
naphthoquinone). This observation aligns with existing literature suggesting that steroid structures are 
particularly suitable for interacting with growth factors, such as the NGFR [25]. Moreover, steroid-based 
structures, due to their lipophilicity and ability to cross the blood-brain barrier (BBB), are often 
considered effective ligands for neurological targets. The intrinsic properties of steroids, including their 
ability to form multiple hydrophobic and hydrogen bond interactions, make them suitable candidates for 
binding to receptor proteins such as mTOR and p75NTR. Previous studies have shown that steroids can 
modulate the activity of growth factors and their receptors, impacting neuronal growth and survival, 
which are crucial in AD pathology [26]. 

Importantly, our docking and dynamic stability profiles align with recent MD studies of ligands 
targeting mTOR and NGFR, which have similarly reported ligand-dependent stabilization of active-site 
residues and maintenance of conformational compactness [27, 28]. Such concordance reinforces the 
reliability of our computational approach and supports the pharmacological plausibility of the identified 
repurposing candidates. 

Nevertheless, despite their favorable binding properties, steroid-based drugs are associated with 
systemic adverse effects–including metabolic disturbances, cardiovascular complications, and 
immunosuppression–which limit their long-term therapeutic applicability [29]. Future work should 
therefore focus on structure–activity relationship (SAR) studies and chemical modifications to optimize 
these scaffolds, aiming to retain therapeutic benefits while minimizing toxicity. 

Extended trajectories (≥100 ns) may capture slower conformational modes. Our hardware 
restricted production runs to 10 ns (with three independent replicas). We mitigated this by analyzing 
equilibrated windows, applying replicate-based statistics, and benchmarking against reference ligands. 
Future work will extend simulation times and incorporate free-energy methods as resources permit. 
 
Conclusions 

The computational screening identified atovaquone and ethynodiol diacetate as promising 
candidates for repurposing in AD treatment, specifically targeting mTOR and NGFR, respectively. Their 
strong binding affinities, favorable pharmacokinetic profiles, and stable molecular interactions with these 
targets highlight their potential as disease-modifying therapies. Further validation through in vitro and 
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in vivo studies is essential to confirm their therapeutic efficacy and safety, paving the way for clinical 
trials aimed at addressing the unmet medical needs in AD treatment. 
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