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ABSTRACT
Micro, Small, and Medium Enterprises (MSMEs) often face low efficiency, high error rates, and operator

fatigue in manual assembly. High turnover of inexperienced/novice workers worsens these issues. Automation is
common in large industries, but affordable smart solutions for MSME:s are limited. This study addresses the gap
by converting a Traditional Single- Station Manual Assembly Cell (SSMAC) into a Smart SSMAC i.e. Smart
Assembly Table (SAT). The SAT/Smart SSMAC uses smart technologies to improve efficiency, reduce errors,
and counter the effects of high attrition among novice workers. A design-based experimental method was used.
The upgrade included a Programmable Logic Controller (PLC), a Human- Machine Interface (HMI), sensor-
enabled bin racks, and a modular workstation layout. The SAT/Smart SSMAC was tested in an MSME with
inexperienced/novice workers. Productivity, error rates, and labor cost efficiency were measured. Real-time
monitoring and digital displays guided operators in part selection, placement, and cycle time adherence using video
and alarms. Tests with five inexperienced/novice workers over 100 assembly cycles showed significant gains.
Cycle time dropped by 22.5%, and operator errors fell by 71.43% . Meeting the target cycle time improved by
34.33%, and delays reduced by 69.69%. The upgrade cost INR 129,988. Labor cost per unit decreased by INR
11.38, giving a 35% reduction. The SAT/Smart SSMAC supports Industry 4.0 goals, enhances lean manufacturing,
and retains human involvement. Future upgrades, such as predictive maintenance and augmented reality, could
further increase its benefits. The system’s flexibility across skill levels and product complexities offers potential for
broader application.
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Introduction

Micro, Small, and Medium Enterprises ( MSMEs) are vital components of the global
manufacturing landscape, making substantial contributions to both industrial expansion and overall
economic progress [ 1]. Nevertheless, many of these enterprises encounter persistent issues including
frequent workforce turnover, varying skill levels among operators, and inefficiencies inherent to manual
assembly tasks [2-4]. Traditional Single-Station Manual Assembly Cells (SSMACs) depend significantly
on human expertise, which introduces risks such as operational inconsistencies, elevated error rates, and
higher production costs [5, 6]. Tackling these concerns is vital for improving operational effectiveness,
maintaining product quality, and sustaining competitiveness [7, 8]. The advent of Industry 4.0 technologies
offers a promising pathway, where the adoption of intelligent/ smart systems within manufacturing
environments can effectively address these operational shortcomings [7-9].

Traditional SSMAC faces challenges like space limitations, static designs, and high error rates
due to manual operations for diverse products [ 10, 11]. Additionally, traditional setups lack real- time
feedback and adaptability, hindering quick issue resolution and process optimization [ 12]. The rise of
Industry 4.0 has transformed traditional manufacturing through digital integration [13].

Previous research has explored various aspects of SSMAC’s efficiency, including automation
and ergonomic design [ 14]. However, many studies have focused on narrow aspects such as robotic
automation or specific ergonomic improvements [ 14, 15], often neglecting a holistic approach that
integrates both technological and human factors. Additionally, there is a lack of comprehensive studies
that evaluate the real-world implementation and impact of Smart SSMAC in industry.

This study investigates the operational limitations encountered by a specific MSME struggling
with high annual attrition rates among inexperienced/novice assembly workers. The frequent turnover
resulted in increased training demands, loss of process consistency, and reduced overall productivity.
While prior research has explored the adoption of automation and smart technologies in large- scale
manufacturing, limited attention has been given to context- specific solutions for MSMEs, particularly
those that rely on novice workers for labor- intensive assembly tasks. This study fills that gap by
developing and implementing a Smart SSMAC designed to enhance worker support, reduce errors, and
improve production efficiency in high- attrition environments common to MSMEs. To mitigate these
issues, a traditional SSMAC was upgraded to a Smart SSMAC. The study specifically aimed to resolve
inefficiencies, frequent errors, and higher assembly cycle time i.e. low productivity associated with
inexperienced/novice workers using traditional assembly methods while addressing gaps identified in
existing literature. The study specifically focused on addressing inefficiencies, frequent errors, and
prolonged assembly cycle times because these factors directly impacted the MSME’s ability to meet
production targets, maintain product quality, and remain competitive. These challenges were exacerbated
by the reliance on inexperienced/novice workers, leading to inconsistent outputs and increased
operational costs. The main goal was to develop a Smart Assembly Table (SAT), functioning as a Smart
SSMAC, to minimize reliance on operator expertise by integrating automation, guided interfaces, and

error-proofing features. This development aimed to provide consistent assembly performance regardless
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of worker experience, thereby addressing operational challenges specific to the MSME. It aimed to
reduce assembly cycle time and minimize operator errors, leading to better assembly efficiency and
accuracy while maintaining the reduced set/ target cycle time. The Smart SSMAC was designed to
be versatile, adaptable to diverse assembly tasks and environments, and capable of accommodating a
range of products. By addressing these challenges, the research contributes to advancements in industrial
assembly technologies and aligns with the broader goals of Industry 4.0.

The study's primary goals were: (i) to design and implement a Smart SSMAC incorporating
advanced technologies such as real- time monitoring, a Programmable Logic Controller (PLC), and an
intuitive Human-Machine Interface (HMI) using an iterative prototyping-based design and experiment
methodology guided by the principles of user-centered design and lean manufacturing, (ii) to assess the
impact of the Smart SSMAC on assembly cycle time, operator errors, defect rate, and financial benefits
while working with inexperienced/novice workers, and (iii) to explore possible enhancements and future
research opportunities for Smart SSMAC, focusing on emerging technologies and long-term outcomes.

This paper adds value to the field by offering a holistic approach to smart manual assembly
systems. It combines both technological and human factors, details the design and implementation of
the smart SSMAC, and provides an in-depth analysis of its performance. The study offers significant
insights into the integration of advanced technologies in transforming manual assembly processes and
sets the stage for future advancements in this domain.

The structure of the paper is as follows: Section 2 reviews related literature and previous work
on automation, smart technologies and improvements in assembly efficiency. Section 3 describes the
methodology employed in designing and implementing the Smart SSMAC, including data collection and
analysis methods. Section 4 presents the results and evaluates the performance of the Smart SSMAC. It
also discusses the implications of the findings, including interpretations, limitations, and
recommendations. Finally, Section 5 concludes the paper and suggests potential directions for future
research.

The field of assembly efficiency has been extensively studied, with various approaches aiming
to enhance accuracy and reduce errors in manual assembly processes. This section reviews relevant
literature on traditional assembly methods, automation in SSMAC, smart technologies in assembly
systems, overview of assembly efficiency improvements and design approaches of assembly system

development.

A. Traditional assembly methods

Enhancing efficiency in Traditional SSMAC typically involves boosting worker productivity and
minimizing waste. By optimizing workstation designs ergonomically, operator fatigue and unnecessary
movement are reduced, leading to streamlined workflows [16, 17]. Standardizing procedures plays a
crucial role in maintaining consistency and quality, while regular maintenance of tools and equipment
helps minimize downtime and errors. Cross-training of workers increases operational flexibility, allowing

quick responses to varying production needs [18, 19]. The use of visual aids and clear documentation
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further supports efficient task completion [20]. Continuous monitoring and feedback mechanisms are
essential for identifying improvement areas, promoting a culture of ongoing enhancement [21]. These
combined efforts result in increased productivity, improved product quality, and reduced operational
costs in single-station assembly environments [20-22].

Early research on assembly efficiency often centered on optimizing manual assembly processes
through ergonomic and workflow improvements. These studies examined workstation design and task
layout to lessen worker strain and decrease cycle times, resulting in enhanced worker comfort and modest
reductions in assembly duration. Notably, some studies reported reductions in cycle time due to
ergonomic modifications, which also contributed to worker well-being and marginal efficiency gains.
However, these improvements were inherently limited by the manual nature and static design of
traditional assembly systems, lacking real-time feedback and adaptive capabilities that could have further

enhanced efficiency and accuracy.

B. Automation in SSMAC

The introduction of automation in assembly systems aimed to address the limitations of manual
processes. Studies investigated the use of robotic arms and automated conveyors to streamline assembly
operations. Automation led to significant improvements in speed and consistency. Studies have reported
increase in production rates and reduction in error rates due to automated systems [23-25]. A pneumatic
PLC-based system was developed to automate the testing of automotive lift gates and door slams,
enabling the analysis of the integrity of various system components. The system incorporated a pneumatic
circuit and PLC-controlled sequential operations to regulate multiple processes, including determining
door opening and closing velocities and executing the required number of continuous cycles [26, 27].
This development exemplifies the transition from a traditional SSMAC to a single-station automated
assembly cell (SSAAC), demonstrating the role of PLCs in enhancing automation, improving process
efficiency, and ensuring consistent quality in assembly operations.

Automation enhanced speed and precision, reduced the dependency on human operators, and
minimized repetitive strain. However, the primary limitations included high initial costs and the
inflexibility of automated systems to adapt to varying product types and changes in assembly processes.
Automation neglects a holistic approach that integrates both technological and human factors. It

overlooks the importance of human involvement in the assembly process.

C. Smart technologies in assembly systems

Numerous studies have investigated the incorporation of smart technologies to improve
efficiency and accuracy in assembly processes. A Smart Assembly Data Model was introduced to
optimize data integration across different assembly stages, with the goal of enhancing traceability and
control [28]. Smart technologies in assembly environments increasingly employ real-time monitoring,
sensor-based feedback, and programmable logic control to improve accuracy and reduce variability.

Systems integrating vision-based inspection and sensor-assisted error-proofing have demonstrated notable
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improvements in defect reduction and process repeatability [29]. Additionally, the use of HMI to provide
context-aware operator guidance has been shown to decrease assembly time and enhance quality,
particularly in setups involving inexperienced/novice workers [30, 31]. Such smart solutions align closely
with the objectives of this study, where technology is leveraged to address inefficiencies, reduce errors,
and optimize assembly cycle times. A case study introduced a manual assembly station equipped with
smart technologies, designed to self-configure based on worker needs and product variety. It
demonstrated reduced assembly times and errors compared to traditional workstations [12]. Digital Twin
(DT) is being considered as a prominent advanced technology in automation and smart systems [32-34].
A study evaluated the use of a DT in the concept of a smart assembly line to optimize assembly
processes, comparing selective assembly and individualized locator adjustments. Results
showed that individualized locator adjustments significantly improved geometrical quality compared to
selective assembly [35]. A smart assembly system with a self-configurable workstation used smart
algorithms. It improved ergonomics, reduced assembly time, and minimized errors. The system adapted
efficiently to new products and worker characteristics [36]. An adjustable smart assembly workstation
with a motorized table and an adjustable chair improved worker comfort and task performance compared
to fixed workstations. It enhanced ergonomics and reduced health risks [37]. An Intelligent Assembly
Process Improvement System (IAPIS) using k-means clustering and multi-response Taguchi methods
was proposed. It identified critical process parameters and significantly improved Printed Circuit Board
Assembly (PCBA) yield performance in a case study [38].

A conceptual framework for Smart Manufacturing in PCB industries was presented, focusing on
intelligent systems to enhance PCBA processes [39]. Productivity improvements at assembly stations
were explored using work study techniques, with an emphasis on lean methodologies and ergonomic
enhancements [40]. A Smart Assembly Line for automotive manufacturing was developed, incorporating
Internet of Things (IoT) and machine learning to facilitate adaptive process control and predictive
maintenance [41]. The integration of IoT and machine learning in smart assembly systems was further
examined, highlighting advances in real-time monitoring and decision-making capabilities [42].
A comprehensive review of smart assembly technologies outlined current applications, challenges, and
future developments in the field [43]. An Intelligent Assembly Table for the aerospace industry was
designed, focusing on adaptive tooling and real-time feedback to improve precision and efficiency [44].
Additionally, a case study on enhancing assembly line efficiency through smart manufacturing
emphasized the role of DTs and predictive analytics in optimizing production processes [45].
Collectively, these studies illustrate the various approaches and technological advancements driving the
evolution of smart assembly systems, from augmented reality and adaptive algorithms to IoT integration
and predictive analytics [13, 46]. Manufacturers are driven to invest in smart manufacturing by the
potential for increased production volumes, enhanced efficiency, and reduced overhead, operational, and
capital expenses [46].

Smart technologies offer real-time monitoring, predictive maintenance, and enhanced

adaptability, providing a more flexible and responsive assembly environment. Despite these



Sci Ess J Vol. 41 No. 2 (2025) 246

advancements, challenges remain, such as the integration complexity of new technologies and the need
for significant upfront investment. Additionally, the effectiveness of these systems can be limited by the

quality of data and the ability to accurately interpret and act upon it.

D. Overview of assembly efficiency improvements

Assembly efficiency improvements in smart manual assembly systems, utilizing PLCs, real-time
monitoring, and HMIs, focus on enhancing human performance and process control [47]. PLCs ensure
precise control of assembly operations, automating guidance for routine tasks and maintaining
consistency [47, 48]. Real-time monitoring provides instant feedback on system performance, allowing
for quick detection and resolution of issues, thereby minimizing downtime [49]. HMISs facilitate seamless
interaction between operators and machinery, displaying critical data and enabling easy adjustments [50].
These systems support detailed tracking of assembly metrics, helping identify inefficiencies and areas
for improvement [13, 22, 50].

By optimizing manual processes with these technologies, manufacturers can achieve higher
productivity, better quality control, and reduced operational costs without relying on robotics or advanced

Artificial Intelligence (Al) systems.

E. Design approaches for assembly system development

Designing effective assembly systems, particularly in low-volume, high-mix environments
typical of MSMESs, requires a multidisciplinary approach that integrates ergonomics, cognitive
engineering, and lean principles [51, 52]. Traditional design approaches often relied on operator-centered
workstations optimized for reachability, visibility, and fatigue reduction, as discussed in the works of
Konz and Johnson [53]. Over time, methodologies such as Human-Centered Design (HCD) and User-
Centered Design (UCD) have gained prominence for tailoring systems to inexperienced/novice or
variable-skill operators, which is highly relevant in the context of high attrition environments [54-56].

Moreover, smart assembly cell development increasingly adopts iterative prototyping frameworks
such as the Design Thinking process, which emphasizes empathy-driven problem definition, ideation,
rapid prototyping, and user feedback integration [57-59]. Lean Product and Process Development
(LPPD) principles have also been applied to minimize waste and improve flexibility in workstation
layout and function [60-62].

Modular design strategies, combined with Cyber-Physical System (CPS) principles, have further
enabled the integration of programmable controllers, feedback interfaces, and sensor-based decision-
making into manual stations. These hybrid approaches allow for enhanced operator guidance, error-
proofing (poka-yoke), and dynamic work pacing [63, 64]. Such integrated design methodologies provide
a foundation for implementing Smart SSMACs aimed at inexperienced/novice users, as in the current
study.

The literature highlights a clear progression from manual assembly improvements to automation

and smart technologies. Traditional methods provided foundational improvements but were constrained
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by their static nature and lack of real-time adaptability. Automation improved efficiency and accuracy,
but it had high costs and lacked flexibility. It also failed to adopt a holistic approach that combines
technology and human involvement. Smart technologies represent the latest advancement, providing
enhanced real-time feedback, predictive maintenance, and adaptability. However, they also introduce
new challenges, including integration complexity and data management issues.

The reviewed literature underscores the potential of integrating advanced technologies into
assembly systems to address both traditional and automation-related limitations. This paper builds upon
these findings by developing and implementing a SAT, a Smart SSMAC, that combines real-time
monitoring, programmable automation control by PLC, advanced HMI, and modular design to overcome

existing challenges and enhance overall assembly performance with inexperienced/novice worker.

Methodology

This section describes the development and implementation of the Smart SSMAC, including the
methodology used for designing, testing, and evaluating the system. It provides a detailed account of
the process, including data collection, curation, and analysis. Figure 1 provides the outline of the overall
methodology highlighting the three/four major stages: system design, programming, experimentation and

evaluation metrics.

SYSTEM DESIGN PROGRAMMING STAGES  EXPERIMENTAL
PROCEDURE SYSTEM DESIGN PROGRAMMING EXPERIMENTAL

STAGES PROCEDURE
SMART SSMAC : ”
NOVICE Q 1. Task Selection 5 Novice Workers
WORKERS % 2| 2 Cycle Time Setting 20 Assembly Cycles
3. Bins Loading Data Collection
SET TASKS I I
SYSTEM DESIGN . 3
& PROGRAMMING % e IEI 4. Operator Instructions
ADMIN COLLECTION PROGRAMMABLE LOGIC
LOGIN | START CYCLE CONTROLLER (PLC) J/
HUMAN-MACHINE
IMPLEMENTATION INTERFACE (HMI)
EVALUATION
OK PART

EVALUATION METRICS
« CYCLE TIME .
+ ERROR RATE * Cycle Time

 Error Rate

i
oI
i

« DEFECT RATE

+ FINANCIAL o
BENEFITS  Productivity

STOP CYCLE

Figure 1 Outline of Methodology.

This study adopted an iterative prototyping-based design and experiment methodology approach
rooted in UCD principles to develop the Smart SSMAC. The design process was structured into three
main stages: (i) Conceptual Design and Requirement Analysis — Initial requirements were gathered
through consultations with the MSME’s production supervisors, line operators, and quality control
personnel. Key pain points, such as high error rates, inconsistent cycle times, and limited operator
experience, were translated into functional and technical specifications. (ii) Prototype Development —
The Smart SSMAC was designed to integrate a PLC for process control, sensors for error-proofing, and
an HMI for operator guidance. Multiple low-fidelity mock-ups were created, reviewed with stakeholders,
and refined into a fully functional prototype. The iterative process allowed feedback-driven refinements

to enhance usability and functionality. (iii) System Integration and Pilot Implementation — The finalized
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prototype (Smart SSMAC) was deployed on the shop floor, replacing a Traditional SSMAC in one
assembly station to ensure controlled testing conditions.

Testing Procedure: The Smart SSMAC was evaluated over a four-week period. A total of 5
inexperienced/novice operators with less than six months of assembly experience participated. Each
operator performed identical assembly tasks on both the Traditional SSMAC (baseline) and the Smart
SSMAC (experimental setup). The testing was conducted under identical work conditions, with
standardized work instructions, tools, and material batches to ensure fair comparison.

Evaluation Criteria and Metrics: The system’s performance was assessed using quantitative and
qualitative measures: (i) Assembly cycle time (seconds) — Measured from task initiation to completion
for each product unit. (ii) Error rate (%) — Calculated as the proportion of defective units identified by
quality inspection to total units assembled. (iii) Defect types — Categorized into assembly sequence
errors, component misplacements, and missed fastenings. (iv) Operator Satisfaction — Assessed through
a post-trial subjective survey, covering ease of use, clarity of instructions, and perceived workload
reduction. (v) Operational disruption frequency — recorded as the number of stoppages due to assembly
errors or uncertainty during task execution. This structured methodology ensured that the design process
was transparent, the testing environment was controlled, and the evaluation criteria allowed for rigorous

performance assessment.

A. Block diagram of the approach
In a broad sense, the overall system consists of three major sections: input, processing and
output. Figure 2 outlines the flow of information across three stages.
Input:
® Bin Sensors: When the operator selects a child part, a video will play on the HMI. This is done
using the PLC and SIMATIC WinCC Runtime (RT), a personal computer (PC) -based system
from the Totally Integrated Automation (TTA) portal for monitoring and controlling automation

tasks.

® Buttons/Switches (Start, Stop, Reset, Cycle Start, Cycle Stop, Emergency Stop): These buttons
allow the operator to interact with the system. They can start or stop a process, reset the system,
or initiate a cycle.

Central Processing Unit (CPU):

® PLC: The PLC acts as the brain of the system, processing inputs from the sensors and buttons.
It makes decisions based on its programming and controls the outputs accordingly.

Output:

® HMI Screen: The HMI screen displays information to the operator, such as system status, visual
instructions (video), textual instructions or error messages. The video shows the operator how
to assemble the selected part into the product. Additionally, an indicator will flash to show
which child part should be picked next. It allows the operator to monitor and interact with the

system more effectively.
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® Tower Light/Indicators: These visual indicators provide immediate feedback to the operator.

They can show the status of the system, such as whether it is running, stopped, or if there is

an €rror.
INPUT
Bin Sensors \ Buttons/Switches (Start, Reset, Cycle Start, Stop)
CENTRAL PROCESSING UNIT
PLC
OUTPUT
HMI Screen with SIMATIC WinCC RT \ Tower Light/Indicators

Figure 2 Outline of information flow.

Figure 3 provides an overview of the building blocks of the system. It shows the four major
blocks of the system: input component, user interface component, controller component, and output

component.

INPUT COMPONENTS

1. Bin Sensors

2. Control Switches for Operator

A

CONTROLLER COMPONENT OUTPUT COMPONENT
1. HMI Displaying the Product Count
SOFTWARE HARDWARE
Manager
1. SIMATIC STEP7 (TIA I:: p
2. HMI Displaying the Video
Portal) SIMATIC S7-
2. Ladder Logic 200 Smart PLC ) ) .
3. HMI Displaying the Instructions
Programme
3 4. Tower Light
USER INTERFACE COMPONENTS 5. Bin Indicator (Green/Red)
CONFIGURATION/PART SELECTION 6. Buzzer/Alram

1. Admin login for RESET Control

2. Cycle time setting

3. Part list and SOP configuration
4.Video database
SOFTWARE HARDWARE

WinCC RT HMI

Figure 3 Building blocks of the system.
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B. System design and implementation
Design of the SAT/Smart SSMAC:

The SAT integrates several key components like modular workstations, sensors for part
identification, a HMI for real-time feedback, and a PLC based control unit for managing assembly
processes. The SAT/Smart SSMAC features a modular setup that allows for customizable configurations
to suit different assembly tasks. This design facilitates easy adaptation and scalability.

Development, Integration and Implementation of the SAT/Smart SSMAC:

® Development Process: Initial prototypes were developed to test various configurations and

functionalities.

® Integration Process: Components were integrated into a cohesive system, ensuring seamless

communication between sensors, HMI, and PLC based control units.

® [mplementation Process: The prototypes were evaluated for ergonomics, efficiency, and

integration capabilities.

C. Data collection

Performance Metrics:

® (Cycle Time: The time taken to complete an assembly cycle was recorded to evaluate efficiency

improvements.

® Error Rates: The number of errors and failed cycles were monitored to assess the accuracy of

the assembly process.

® Adherence to the set/target cycle time: Data on time keeping by the operator was collected for
inexperienced/novice operators.
Data Sources:
Data from sensors tracking part placement and cycle time. Real-time logs from the HMI interface
providing insights into cycle times, error rates, and part counts. Observations and feedback from operators

during testing phases.

D. Data curation
Data Validation:

Raw data was cleaned to remove any anomalies or inaccuracies, ensuring that the data used for
analysis was reliable. Data was normalized to facilitate comparisons between different test scenarios for
inexperienced/novice operator.

Data Organization:
A database was created to store and manage the collected data, allowing for efficient querying

and retrieval. Data was categorized based on performance metrics and assembly configurations.
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E. Mechanical details

This sub-section includes the mechanical design and dimensions of the SAT focused on
enhancing worker efficiency and reducing errors through a refined, ergonomic layout. Initial concepts
underwent multiple iterations to improve functionality and user interaction. Key features include an
adjustable control panel, strategically placed bin sensors, and ample leg movement space, ensuring both
comfort and precision for operators.

In the initial stages, multiple iterations were developed to refine the concept and enhance the
overall functionality of the SAT. Figure 4 illustrates a refined design derived from these iterations,
showcasing significant improvements and optimized functionality. This SAT is meticulously engineered
to enhance user experience through a well-organized layout, ergonomic features, and advanced control
options. Unlike previous versions, this design is more intuitive, facilitating easier user interaction. It is
also highly efficient, reducing the time and effort required for assembly tasks. The user-friendly design
ensures that operators can work comfortably and with greater precision, leading to a streamlined assembly
process. Consequently, productivity is significantly increased, and the quality of outputs is greatly
improved. This SAT represents a significant advancement in assembly technology, embodying innovation
and excellence in its design and functionality. Table S1 presents the dimensions taken into consideration

while preparing iterations and CAD designs for the SAT.

BACK VIEW FRONT VIEW

Figure 4 Conceptual design of SAT, a Smart SSMAC.

F. Electrical details

This section deals with the electrical system, focusing on the control panel wiring associated
with the SAT. The electrical design plays a crucial role in ensuring the seamless operation of the SAT,
integrating various sensors, control units, and feedback mechanisms to enhance efficiency and accuracy
in the assembly process.

The control panel is the central hub of the electrical system, housing the wiring and components
that manage the SAT's functionality. It involves integration of sensors that detect the correct parts and

alert operators to errors, ensuring precision in assembly tasks. The wiring was meticulously planned and
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implemented to support these functionalities, prioritizing reliability and ease of maintenance. Figure 5
highlights the detailed and complex wiring and connections within the control panel of the SAT system.
Prominent components include the Siemens S7 200 Smart PLC with Extension Module Digital 32
(EM DT 32), Trinity Touch Relay Module 8 Channel/4 Channel (Omron Relay), L&T Molded Case
Circuit Breaker (MCCB) 10 ampere Double Pole, NHP Switch Mode Power Supply (SMPS) 24V 5A,
and Elmex KUT2.5 terminal connector blocks, all of which are precisely arranged and interconnected.
On the other hand, the wiring diagram for the control panel of the SAT system illustrates the intricate
connections and interactions between various components, ensuring optimal functionality and reliability.
Key components include the PLC, which processes and controls the assembly process, connected to
sensors and actuators via input and output terminals. The relay module board receives control signals
from the PLC to switch high-power devices, while the Miniature Circuit Breaker (MCB) provides
overcurrent protection, distributing power to the SMPS and directly to high-power components. The
SMPS converts AC to DC, supplying power to the PLC, relay module, and other devices. Connector
terminal blocks facilitate secure and organized wiring, with color-coded wires routed neatly to prevent
interference. The diagram ensures proper assembly and maintenance by showing clear power distribution,
control signal pathways, actuation processes, and safety features, all essential for the efficient and safe
operation of the SAT system. Additionally, input/output (I/O) list was prepared to account for some

unused inputs and outputs in the control panel.

Figure 5 Wiring within control panel.

G. Sensor and indicator mounting

This section addresses the mounting of sensors and indicators on the SAT. The placement and
integration of these components are critical for the SAT's functionality, ensuring accurate detection of
parts and effective communication of status to operators.

The sensor and indicator mounting process began with careful planning to determine the optimal
positions for each component. Sensors were strategically placed to monitor the correct bin selections
and assembly steps, providing real-time feedback and error alerts to operators. This positioning helps
prevent mistakes and streamlines the assembly process by guiding the operator through each task. Figure

6 shows the mounting of sensors and indicators on the fabricated bin racks.
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The Sensor GTB6-P1212, photoelectric sensor made by SICK, was selected for the SAT project
due to its high detection accuracy, robust performance, and ease of integration. Its retro reflective sensing
capability with a polarization filter ensures reliable detection of objects up to 6 meters away, making it
ideal for the various detection needs of the SAT. The sensor’s fast response time and high load capacity
ensure it can handle real-time detection and control tasks effectively. The compact and durable design,
along with flexible mounting options, facilitates easy installation and long-term reliability, making the
GTB6-P1212 an excellent choice for enhancing the automation and efficiency of the SAT.

Industrial Light Emitting Diode (LED) 10 mm indicator was selected for the SAT project due
to its exceptional durability, visibility, and ease of integration. Featuring a bright surface mount device
LED that ensures clear visibility in various lighting conditions, coupled with its IP65 rating for dust and
water resistance, the indicator is well-suited for demanding industrial environments. Its wired design
simplifies installation and connection to existing systems, enhancing operational efficiency. Moreover,
the indicator's robust construction, including fire-retardant and Ultra Violet (UV) -resistant materials,
ensures longevity and safety, making it an ideal choice for enhancing the functionality and reliability of

the SAT system.

Figure 6 Sensor and indicator mounting.

H. Switches and operational sequence

The EMERGENCY SWITCH integrated on the 6-button panel, alongside the START CYCLE,
START, STOP, STOP CYCLE and RESET buttons, is a crucial safety feature for the SAT. This panel
ensures efficient control and quick response during assembly operations. The START button initiates
the individual assembly cycle as and when required by the operator. STOP button provides signal to
stop the ongoing assembly of the product due to (i) erroneous activities done by the operator or (ii)
intentional stoppage as per operators will (personal break, shift change etc.). Now, pressing START
button resumes the assembly cycle from where it was stopped previously. STOP CYCLE button provides
signal for completion of current batch of the product and manager/supervisor is expected to intervene to
provide/set instructions for the next product to be assembled through the admin login of the HMI screen.

After STOP button, pressing RESET button is used to terminate the ongoing cycle and then pressing
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START button initiates a new assembly cycle for the ongoing product. The partially assembled product
is to be placed into Not OK bin. The START button initiates the assembly process, the STOP button
halts operations as needed, and the RESET button reinitializes the system after a stoppage or error.
The EMERGENCY SWITCH, distinctly colored and easily accessible, is designed to immediately cut
off power and halt all operations in the event of an emergency. This rapid shutdown capability is
essential for protecting workers from potential hazards and preventing damage to equipment. The
integration of these six functions into a single panel streamlines operations, enhances worker safety, and
ensures a robust response to any situation that may arise during the assembly process. In normal run,
there is no need to press START button for every individual assembly cycle, the PLC is programmed
to initiate new cycle in loop. After assembling the last child part, the final assembled product is required
to be inspected and tested manually by the operator. Based on the manual inspection and testing the
final assembled product is placed in OK or Not OK bin and the corresponding product counter increments

accordingly.

I. Programming

The programming of the SAT system is carried out to streamline the assembly process and
minimize errors through an intuitive workflow and real-time feedback mechanisms. Figure 7 illustrates
the system workflow chart, which guides operators through the part selection process with automated
prompts and alerts. The manager/supervisor must check whether the type of product for which
assembly is to be carried out is available in the product master list. If not, intimate to information
technology (IT) team to include the parts list and the sequence of assembly tasks. The master data
includes types of products to be assembled, recipes: list of child parts required for respective product
along with their part identification number and bin location; the sequence in which assembly task is to
be carried out, and standard cycle time required to complete the entire assembly for that one product.
Figure 8 present flowcharts illustrating the Stages for the Manager/Supervisor (Figure 8 (a)) and Stages
for the Operator (Figure 8 (b)).

Stages for the Manager/Supervisor (Figure 8 (a)):

Before the operator starts working with the SAT, the Manager/Supervisor has to first set the
assembly tasks of a particular product for the operator through HMI screen. Before the operator starts
working with the SAT, the Manager/Supervisor, through the admin login of the HMI screen, has to first
select the type of product for which assembly is to be carried out, secondly to set the product cycle
time, and third to instruct the operator to load the bins fully with respective child parts. The product
cycle time is the summation of all equal element times corresponding to the individual assembly tasks
associated with each child part. For example, if the product requires assembly of 10 child parts and
standard cycle time associated with the assembly of product is 30 minutes (1800 seconds), then the
permissible element time for completing the assembly of each child part is automatically set to 3 minutes

(180 seconds) through the program. The quantity of assembled product (number of OK products) is
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required to be monitored through the counter monitor display (number of OK parts). Once the required
quantity of products is assembled, operator has to intimate the manager/supervisor to provide/set
instructions for the next product to be assembled. Manager/supervisor does this through the admin login
of the HMI screen.

Stages for the Operator (Figure 8 (b)):

Once the instructions are set by the manager/supervisor, operator has to start working with the
workstation and start assembly activity. The stages involved are as below: 1. Press START CYCLE
button, 2. Press START button (within 10 seconds otherwise buzzer alerts notify the operator), thereby
Green indicator, of a bin containing first child part, turns ON, 3. Operator to pick up the part from the
specified bin, 4. Part pick-up activity is detected by the sensor, 5.1 Accordingly the video of the
respective assembly process plays on the HMI screen (Operator can choose to skip the video playing.
Operator takes help of video only when there is new kind of assembly task. However, with certain
number of repetitive activities operator learns or acquires the skill and then may choose to skip displaying
the video(s) for further cycles), 5.2 The Green indicator of the bin containing next child part to be
picked up for assembly turns ON, 5.3. Timer corresponding to the element time is initiated, 6.1 If the
operator takes more than the permissible time to complete the elemental activity then the buzzer alerts
notify the operator. The system memorizes this event. When operator completes the assembly and if the
assembled product is put in OK bin then failed cycle (delayed cycle time) counter and number of OK
products counter get simultaneously incremented, 6.2. If the operator completes all the assembly tasks
(elemental activities) within permissible time and if the assembled product is put in OK bin then
successfully cycles completed counter and number of OK products counter get simultaneously
incremented, 7. After inspection and testing, if the final assembled product is not found OK then the
operator places it in Not OK bin and the number of Not OK parts counter gets incremented, 8. After
accumulation of required number of OK parts the operator presses STOP CYCLE button, 9. The
manager/supervisor sets the instructions for a batch of another product. Number of OK parts displayed
is the summation of successfully cycles completed and failed cycles.

The workflow begins with the selection of a child part from a bin. If the selection is correct, the
process moves to the next bin. If the selection is incorrect, buzzer alerts notify the operator, prompting
them to pick the correct part. The system also includes steps for inspecting parts manually and
determining their status, ensuring that only acceptable parts are used in the assembly. This programming

approach enhances accuracy and efficiency, significantly improving the overall assembly process.

® The process starts with selecting a child part from a bin.

If the child part selection from a bin is CORRECT, the process moves to the NEXT BIN.
® [f the child part selection from a bin is WRONG, the process triggers BUZZER ALERTS.

® When a wrong bin is selected, a buzzer alerts the operator/assembler and he/she is then
prompted to PICK CORRECT PART from the bin.

® The operator inspects the part and determines its status.
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Figure 7 System workflow chart.

J. HMI screen design

Using WinCC RT, the focus was on creating HMI screens that are user-friendly and easy to
understand. These screens are designed to be straightforward and intuitive, ensuring that operators and
assemblers can effectively use the SAT without confusion. The design prioritizes simplicity in layout
and clarity in instructions, guiding users step-by-step through the assembly process. By considering
ergonomic factors and ensuring the screens are easy to navigate, the overall efficiency in industrial
operations is enhanced. This approach not only reduces the likelihood of errors but also improves

productivity by enabling workers to perform tasks more effectively and with greater confidence.
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(a) Stages for the Manager/Supervisor (b) Stages for the Operator

Figure 8 Flowcharts illustrating (a) Stages for the Manager/Supervisor, and (b) Stages for the Operator.
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K. Experimental procedure

A study was conducted using two types of SSMAC: a Traditional SSMAC and a Smart SSMAC.
Both stations perform identical assembly tasks, ensuring a consistent basis for comparison. The Smart
SSMAC was equipped with advanced features, including a PLC, HMI screen, sensor-enabled bin racks,
and real-time monitoring systems. These enhancements were designed to assist workers with precise part
selection, placement, and cycle time adherence.

The assembly stations were operated by five different inexperienced/novice workers with
minimal or no prior experience in assembly work. The sample size of five participants was selected
based on the exploratory nature of this study, which aimed to evaluate the feasibility and functionality
of the Smart SSMAC system rather than to establish definitive statistical generalizations. This participant
count aligns with prior early-stage industrial ergonomics and HMI evaluation studies, where small
sample, within-subject designs have been shown sufficient for detecting major usability issues and
process bottlenecks during initial trials [65-68]. Additionally, a preliminary statistical power analysis
was performed assuming a medium effect size (Cohen’s d = 0.5) and O = 0.05 for paired-sample
comparisons. The analysis indicated that a minimum of five participants would provide >80% power to
detect significant differences between baseline Traditional SSMAC and Smart SSMAC assembly times.
This justified the chosen participant number for this stage. Future work will incorporate larger and more
diverse participant groups to validate the findings for broader industrial applicability. The Supporting
Information - Statistical power analysis (planning and post-hoc) provides more insights for the
justification of chosen participant number.

Each worker was asked to run 20 assembly cycles. A total of one hundred assembly cycles
were observed with each type of SSMAC and pertinent data was recorded. Each worker was tasked with
completing a series of assembly operations on both the assembly stations for the same product. The
chosen methodology of testing both a Traditional SSMAC and a Smart SSMAC using five
inexperienced/novice workers across 100 assembly cycles ensures a systematic, unbiased, and

representative comparison of the two systems. The following justifications support this approach:

Standardization and Fair Comparison
® Using the same product for assembly across both stations had ensured that differences in
performance could be attributed to the assembly system rather than variations in the product.
® The same five workers performing assembly on both stations had eliminated variability due to
skill differences, ensuring that the comparison was valid.
Evaluation of Usability for Inexperienced/Novice Workers
® [nexperienced/Novice workers (with minimal or no prior experience) had been intentionally
chosen to assess how intuitive and user-friendly each assembly system was.
® The learning curve and ease of operation for inexperienced/novice workers had been critical

factors in determining the efficiency of a smart assembly system.
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Minimizing Bias and Ensuring Statistical Relevance

® FEach worker having performed 20 cycles per station had ensured a sufficient sample size (100

total cycles per station) for meaningful statistical analysis.

® This had reduced the impact of random variations and had enhanced the reliability and
reproducibility of the results.

Understanding Performance under Realistic Conditions

® |n many industrial settings, new or inexperienced/novice workers had frequently join assembly
lines. Testing with novices had helped determine which system required less training and allowed

quicker adaptation.

® The performance comparison between Traditional and Smart SSMACs under real-world
conditions had provided insights into potential productivity gains and error reduction.

Assessment of Efficiency, Error Rates, and Ergonomics

® (bserving 100 cycles per station had allowed for the collection of quantitative and qualitative

data, such as assembly time, error rates, worker fatigue, and ergonomic factors.

® This data had been essential for evaluating the effectiveness of the Smart SSMAC in reducing
errors, improving efficiency, and enhancing worker comfort.

The historical data from the concerned MSME indicated that the batch quantity for any
assembled product ranged from 10 to 20 per setup. The same batch was repeated later with a different
quantity. The repetition frequency over a week varied between 2 and 6 times. This posed limitations on
learning rate or learning curve analysis due to limited number of cycles per batch and frequent
changeovers for different types of products to be assembled.

Studies indicate that learning effects are most pronounced in the first 20-30 cycles of a repetitive
assembly task. By H50-100 repetitions, the improvement rate slows down significantly, and the cycle
time stabilizes. Beyond 200-300 repetitions, the learning curve flattens, and further reductions in cycle
time become minimal [69, 70].

Thus, though the learning rate or learning curve analysis was not conducted for this study, it
can be inferred that the limited batch size and low repetition frequency hindered the establishment of a
consistent learning pattern. The frequent changeovers and variability in batch quantities likely disrupted
any sustained improvement in cycle time. As a result, traditional learning curve models, which rely on
continuous repetition and progressive efficiency gains, would not be fully applicable in this context.

To determine the target/set standard cycle time following steps were followed [71]:

1. The assembly process was broken down into work elements requiring approximately equal

amount of time.

2. Time study was conducted with five different workers and each worker operating 20

assembly cycles for the same product.

3. The average observed time was calculated.

4. Every worker’s speed was assessed relative to standard pace while working on Traditional

and Smart SSMAC. The performance ratings of all workers were determined using the
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Methods Time Measurement ( MTM), the most popular Predetermined Motion Time
Standards (PMTS) as it is the oldest one.

5. Subjective feedback was taken from all the workers.

6. The feedback was analysed to identify the reasons for obtaining the same/ different
performance ratings by the same worker over the two scenarios.

7. The observed assembly cycle time was adjusted based on the performance rating using the

relation as per the equation (1):
Normal Time = (Observed Time) x (Performance Rating) (1)
8. A 10% allowance was considered while calculating the standard time as per the equation (2):
Standard Time = Normal Time x (1 + Allowance) (2)

9. The standard time was then compared with industry benchmark and historical data and

adjusted accordingly.

This methodology ensured an objective, data-driven comparison of both assembly systems
(Traditional and Smart SSMAC) under controlled yet realistic conditions. It provided insights into the
usability, efficiency, error rates, and learning curve associated with each system, supporting informed
decision-making regarding the adoption of smart assembly technologies.

The following metrics were recorded for each task: (i) completion time (cycle time)- the time
taken by each worker to complete the entire assembly operation, (ii) operator errors (error rate)- the
number of errors made while picking the requisite child part in sequence during the assembly process
(but not necessarily result in final assembled defective product, however may result in delayed cycle
time), (iii) delayed cycle time instances (cycle time adherence)- the instances which resulted in producing
acceptable (OK) final assembled product but cycle time required to complete the assembly is higher
than the set cycle time, (iv) operator feedback- subjective feedback from the workers regarding their
experience with both assembly stations.

Efficiency was defined as a function of task completion time, error rate, and cycle time
adherence. The efficiency of worker group on both assembly stations was calculated and compared to
identify trends and differences. The efficiency improvement for the Smart SSMAC was determined by
comparing the performance metrics of the workers on the smart station to those on the traditional
SSMAC.

Data were recorded for analysis pertaining to Traditional SSMAC and Smart SSMAC. The
collected data were analysed to determine the efficiency improvements for inexperienced/novice workers
when transitioning from the Traditional to the Smart SSMAC. To understand the financial implications

on the organization, data was also recorded to facilitate cost saving per assembled product.
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Results and discussion

Figure 9 presents a comparative look at the SSMAC system before and after implementation
through photographic evidence. The images visually illustrate significant improvements in system design,
workspace layout, and automation enhancements, showcasing the advantages of the upgraded system.

Figure 10 illustrates the HMI screens designed for the SAT/Smart SSMAC, showcasing a
comprehensive and user-friendly layout for efficient part assembly and managerial/supervisory control.
These screens enabled the Smart SSMAC to remain flexible while accommodating the requirements of
soft product variety. The Smart SSMAC can be configured based on the type or variety of the product
to be assembled, with its configuration limited by the number of child parts as determined by the
hardware/bin setup.

The primary screen provides options for part selection and cycle monitoring, ensuring operators
can easily initiate and track the assembly process. Subsequent screens display detailed information on
the number of successful and failed cycles, as well as the count of Ok and Nok (Not OK) parts, allowing
operators to monitor performance and identify errors in real time. Additionally, the interface includes
specific screens for different final assembled product component categories, such as Emergency Switch,
Selector Switch, and Metal Lock and Key, each listing corresponding child parts for easy identification
and selection. The managerial control screen enables administrators to reset controls and adjust cycle
time settings via a user-friendly slider, facilitating precise cycle time management and enhancing overall
assembly efficiency. This HMI design aims to streamline the assembly process, reduce errors, and
optimize worker productivity by providing intuitive and accessible control options.

The implementation of the SAT/Smart SSMAC has yielded significant positive outcomes across
various metrics critical to industrial assembly. The data were recorded during the testing and evaluation
phases and further analysed for determination of various performance metrics.

Table S2 presents the actual cycle time recorded for twenty assembly cycles by each of five

workers (i.e. one hundred assembly cycles) with Traditional and Smart SSMAC.

AFTER

Figure 9 SSMAC photographs before (i.e. Traditional) and after (i.e. Smart).
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Figure 10 Illustration of HMI screens to cater product variety.

A. Analysis based on Cycle Time and Standard Time
Tables S3 and S4 illustrate the determination of standard assembly cycle time through data
analysis for assembly cycles using Traditional and Smart SSMAC, respectively.

Comparative Analysis of Cycle Time and Standard Time

® The data indicated that inexperienced/novice workers exhibited significantly lower cycle times
in the Smart SSMAC compared to the Traditional SSMAC. The average cycle time for workers
in the Smart SSMAC ranged from 898.55 to 930.95 seconds, whereas in the Traditional
SSMAC, it was 1142.65 to 1223.80 seconds. This suggests that the Smart SSMAC facilitated
faster task execution, even though all workers were still operating at a pace slower than the

standard.

® The calculated Standard Time in the Smart SSMAC was approximately 898.52 to 946.82
seconds, while for the Traditional SSMAC, it was 1194.07 to 1211.56 seconds. The average
Standard Time considered for further analysis in the Smart SSMAC was 930 seconds, while for
the Traditional SSMAC, it was 1200 seconds. This reduction in Standard Time further confirmed
the efficiency-enhancing capabilities of the Smart SSMAC.

Impact of Smart SSMAC on Performance Efficiency

® Despite having performance ratings below 100% (indicating that workers are slower than
standard pace in both setups), the cycle times in the Smart SSMAC were consistently lower.
This suggests that technological enhancements, better ergonomics, and process guidance in the
Smart SSMAC helped mitigate inefficiencies, reducing total assembly time. The percentage

reduction in cycle time due to Smart SSMAC implementation ranges from 20% to 26% across
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different workers. With reference to the average cycle time, 22.5% reduction in cycle time was
obtained.

Influence of Worker Speed (Performance Rating) on Cycle Time

® [t is interesting to note that the performance rating of two workers (worker 3 and 4) were
different and three workers (worker 1, 2 and 5) were same while working with Traditional and
Smart SSMAC. Worker 3 demonstrated faster performance rating of 95% while working with
Smart SSMAC than that of 90% with Traditional SSMAC. Worker 4 demonstrated slower
performance rating of 90% while working with Smart SSMAC than that of 93% with Traditional
SSMAC. No change in performance rating was observed for worker 1, 2, and 5 while working
with Traditional and Smart SSMAC. The performance rating of all workers was recorded and
observed as lower than the standard pace (i.e. lower than 100%) for both Traditional and Smart
SSMAC. Subjective feedback was taken from all the workers and analysing the feedback helped
to identify the reasons for obtaining the same/different performance ratings by the same worker

over the two scenarios.

® Reasons identified for improvement in performance rating while working with Smart than that

of Traditional SSMAC (i.e. worker is faster in the Smart setup than in the Traditional setup)

are discussed here.

O Better Ergonomics in Smart SSMAC:
Smart system has better workstation design, optimized tool positioning, reduction in
unnecessary movements and improvement in cycle time. e.g. a pick-to-light system has
reduced search time, leading to faster assembly.

O Assisted Decision-Making:
The smart system provided step-by-step guidance (video displays, digital work instructions),
it reduced mental effort, helping the worker work faster and with fewer errors.

O Error Prevention & Time Adjustments:
The chances of violating the sequential pick up of parts has got drastically reduced due to
buzzer alerts. Worker was made alert about the excessive elemental time from time-to-time
and this helped worker to change the pace at subsequent work elements and provided an
opportunity to make up against the excessive time spent at earlier work elements.

O Real-Time Performance Feedback & Motivation:
Smart systems often provide real-time performance tracking, which motivated workers to
improve their speed by comparing their performance to standard/target.

O Reduced Stress & Increased Confidence:
With real-time feedback and structured workflows, the worker felt more confident and less
anxious, leading to a smoother and faster performance.

® Reasons identified for greater performance rating while working with Traditional than that of
Smart SSMAC (i.e. worker is faster in the Traditional setup than in the Smart setup) are

discussed here.
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Learning Curve & Adaptation Issues:

The worker was more familiar with the traditional setup and took time to adapt to the smart
system, leading to initial hesitation or slower performance. The smart system has new digital
interfaces (e.g., touch screens, video displays, pick-to-light and buzzer signals), the worker
took longer to operate and understand them.

Increased Cognitive Load in Smart SSMAC:

Worker felt that, the smart system provided too much information (such as real-time
monitoring, alerts, or instructional videos), it slowed down decision-making. The workers
were over-reliant on the guidance from the smart system instead of following their intuition,
causing delays. The worker was overwhelmed by too much real-time data, alerts, or step-
by-step instructions, making them slower as they process information before taking action.
Automation Bottlenecks:

The Smart system forced sequential steps (e.g., waiting for verification before proceeding)
and this slowed an inexperienced/novice worker who previously worked in non-automated
environment.

Lack of Flexibility in Smart SSMAC:

Traditional setups allowed workers to improvise (e.g., adjusting part handling methods or
doing the same thing in different way). Smart system enforced rigid workflows (e.g.,
requiring confirmation before proceeding), which slowed down inexperienced/novice
workers.

Lack of Familiarity with Smart System:

The novice worker struggled to navigate the smart system’s digital interfaces, sensors, or

automated feedback mechanisms, leading to slower execution.

® Reasons identified for same performance rating while working with Traditional and that of

Smart SSMAC (i.e. worker performs at the same speed in both environments) are discussed

here.

(@)

Worker's Adaptation to Both Systems:

Workers naturally adapted well to both Traditional and Smart systems, showing consistent
performance.

Minimal Difference in Task Complexity:

The assembly process was simplified and did not require much decision-making. The smart
system did not distract or acted as a cognitive load on the worker, leading to similar
performance rating in both setups.

Slow Learning Curve in Both Setups:

The worker was still in the early stages of skill acquisition and has not yet developed speed,

making their performance consistently slow across both systems.

® |n both setups, the performance rating alone does not fully explain the cycle time reduction in

the Smart SSMAC. Even workers with the same rating (e.g., Worker 1 in both setups, rated at
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95%) showed substantial improvements in Smart SSMAC. This suggests that process
standardization, automation assistance, and cognitive load reduction play a major role in

improving efficiency, independent of the worker’s manual skill level.

Reduction in Variability of Work Output

® The range of cycle times in the Traditional SSMAC was 81.15 seconds (1223.80 - 1142.65),
whereas in the Smart SSMAC, it was 32.40 seconds (930.95 - 898.55). The reduced variability
in the Smart SSMAC suggests that the system standardizes assembly processes, making
performance more consistent across workers. This reduction in variability indicates that smart
assistance compensates for individual differences in skill level, creating a more predictable and
controlled work environment.

Efficiency Gains from Smart SSMAC

® The percentage decrease in Standard Time for each worker when shifting from Traditional to

Smart SSMAC was significant:

O Worker 1: 21.3% reduction
(1200.29s — 944.315s)

O Worker 2: 22.9% reduction
(1195.92s — 921.64s)

O Worker 3: 21.8% reduction
(1211.56s — 946.82s)

O Worker 4: 24.8% reduction
(1194.81s — 898.52s)

O Worker 5: 21.4% reduction
(1194.07s — 938.98s)

® This confirmed that the Smart SSMAC provided efficiency improvements of approximately 21%
to 26%, likely due to better work ergonomics, automated guidance, and improved workflow

management.

To evaluate whether the observed reduction in cycle time using the Smart SSMAC compared
to the Traditional assembly method was statistically significant, a paired-sample t-test was conducted
[31]. The test was chosen because the same participants performed assembly cycles under both
conditions, allowing for within-subject comparison. The paired-sample t-test showed that the Smart
SSMAC significantly reduced the mean cycle time compared to the traditional method (t(4) = 35.4587,
p < 0.0001, d = 15.86). The 95% CI of the difference ([248.1915 s, 290.3605 s]) indicates that the
reduction in cycle time is both statistically significant and practically meaningful. These results
demonstrate that the observed improvements are highly unlikely to be due to random variation,

supporting the conclusion that the Smart SSMAC offers a substantial performance advantage.
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A one-way repeated-measures ANOVA was conducted with Method (Traditional vs Smart
SSMAC) as the within-subject factor [31]. The F-ratio value is 1257.32109. The p-value is < .00001.
The result is significant at p < .01. The ANOVA confirms the paired t-test results, showing a very strong
and statistically significant effect of method on cycle time.

The convergence of results from parametric (t-test, ANOVA) analyses demonstrates that the
performance improvements achieved by Smart SSMAC are statistically significant, practically

meaningful, and robust to analytical approach [31].

B. Analysis based on errors and defective products

Tables S6 and S7 present the data recorded pertaining to errors, instances of delayed cycle time
and defective products for assembly cycles using Traditional and Smart SSMAC, respectively. The
analysis of data from Tables S6 and S7 helped to determine the performance metrics. Table S8 presents
the performance metrics indicating better performance by Smart SSMAC over Traditional.

Comparative Analysis of Errors and Defective Products (Nok Parts)

® The transition from a Traditional SSMAC to a Smart SSMAC has led to a significant reduction
in operator errors, delayed cycle time instances, and defective products. A comparison of key
performance indicators is presented in Table S8.

Reduction in Operator Errors

® In the Smart SSMAC, the total operator errors were reduced from 14 to 4, a 71.4%
improvement. Possible reasons for this significant reduction include: (i) Real-time guidance and
digital work instructions, minimizing confusion and manual errors, (ii) Cognitive load reduction,
allowing workers to focus more on precision rather than memorizing steps.

Improved Adherence to Set Cycle Time

® The Smart SSMAC increased adherence to set cycle time from 67 to 90 instances, an
improvement of 34.3%. This improvement suggests: (i) Better process standardization, ensuring
workers follow the correct sequence efficiently, (ii) Assisted task execution, reducing hesitation
and variation in task completion, (iii) Automation support for repetitive or complex steps,
reducing delays.

Reduction in Delayed Cycle Time Instances

® The number of instances where cycle time exceeded the set standard dropped from 33 to 10, a
69.7% improvement. In the Traditional SSMAC, workers faced frequent delays due to: (i)
Inefficient task flow (e.g., searching for tools or components), (ii) Errors requiring correction,
leading to extended cycle times, (iii) Physical fatigue and lack of process optimization. The
Smart SSMAC addressed these issues through: (i) Ergonomically optimized workstations,
minimizing unnecessary motion, (ii) Intelligent workflow management, preventing bottlenecks.

Reduction in Defective Products (Nok Parts)

® The number of defective products decreased from 10 to 3, a 70% improvement. Possible reasons

for the quality enhancement include: (i) Error-proofing mechanisms, ensuring correct assembly
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steps are followed, (ii) Digital guidance systems, alerting about defects before they lead to faulty

assemblies. (iii) Reduced rework cycles, preventing cumulative defects.

® Table S9 provides comparison of reasons for production of final defective assembled product
(Nok Parts) in both the environments. This suggests that though there is substantial reduction
in defective products, those cannot be completely eliminated due to certain possible reasons
associated with the Smart SSMAC too.
Standardization and Process Control in Smart SSMAC

® The Smart SSMAC minimized variation across workers. In the Traditional SSMAC, some
workers (e.g., Worker 3) had higher error rates and more delayed cycle times. In the Smart
SSMAC, all workers consistently adhered to set cycle times, with significantly fewer delays and
errors. This suggests that automation and digital assistance compensated for skill level
differences, ensuring consistent output across all operators.
C. Financial implications
Table S10 presents the data for economic analysis for Traditional and Smart SSMAC based on
one hundred cycles.

Productivity Enhancement with Smart SSMAC

® The cycle time per unit is reduced by 22.5% (from 1200 sec to 930 sec), enabling higher
production efficiency. The number of units assembled per hour increased by 29% in Smart
SSMAC (from 3 to 3.87 units/hour), demonstrating improved operational throughput.
Reduction in Labor Cost per Unit

® The average labor cost per unit decreased by 22.5%, from INR 25 in Traditional SSMAC to
INR 19.38 in Smart SSMAC. The total labor cost for 100 good-quality products dropped by
INR 1137.58 (35%), making Smart SSMAC a cost-effective alternative.

Impact of Defective Products on Labor Cost

® The defect rate reduced from 10% to 3% in Smart SSMAC, resulting in 70% fewer defective
products. Due to this improvement, only 103.09 units were required to produce 100 good-
quality products in Smart SSMAC, compared to 111.11 units in Traditional SSMAC. The total
labor cost associated with defective products decreased from INR 750 to INR 174.42, marking
a 76.7% reduction in rework expenses.

Savings on Rework and Assembly Labor Costs

® Smart SSMAC significantly minimizes rework costs, as defective products undergo additional
assembly, disassembly, inspection, and reassembly processes. The average labor cost per unit
for good-quality products is INR 21.12 in Smart SSMAC versus INR 32.50 in Traditional
SSMAUC, leading to a 35% per-unit cost reduction.
Reasons for Cost Reduction in Smart SSMAC

® Process Automation and Digital Assistance

O Automated guidance systems reduce assembly errors, improving first-pass yield.
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O Faster cycle times lead to increased production output per hour.

O Real-time monitoring and process control minimize rework requirements.

® Reduced Defects and Rework
O Smart SSMAC prevents incorrect assembly through error-proofing mechanisms, leading to
fewer defective parts.
O Lower defect rates reduce the need for additional labor costs related to reassembly,

inspection, and disassembly.

® Improved Standardization and Operator Efficiency
O Consistent workflow and guided operations result in less variation between workers.

O Ergonomically optimized workstations reduce operator fatigue, leading to better productivity.

Table S11 provides the overall comparison of results of Traditional SSMAC and Smart SSMAC.

Conclusion

The observed improvements suggest that SAT/Smart SSMAC effectively addressed the key
challenges posed due to the high attrition rate of inexperienced/novice workers while working with the
Traditional SSMAC of the MSME. The real-time monitoring and automated features contributed to more
precise and efficient operations. The significant reduction in cycle times and errors underscored the
potential of advanced technologies to optimize manual processes, enhance accuracy, and streamline
workflow. The improved cycle times and reduced error rates implied that manufacturers can achieve
higher production rates and better product quality with the SAT/Smart SSMAC. This efficiency can lead
to cost savings and improved competitiveness in the market. The cost of upgrading to the Smart SSMAC
was justified by the observed performance gains, highlighting the value of advanced technologies in
modern manufacturing. The increased efficiency for an inexperienced/novice worker highlighted the
Smart SSMAC’s ability to support inexperienced/novice workers. This capability can further reduce the
training burden and ensure consistent performance regardless of operator skill.

By reducing the cognitive load on workers through automated alerts and clear digital instructions,
the Smart SSMAC contributed to a more focused and efficient workforce. This suggests that smart
technologies can enhance human capabilities rather than replace them, fostering a collaborative human-
machine environment. The decrease in errors and increase in productivity reflect the Smart SSMAC's
capacity to support continuous improvement and lean manufacturing principles, which are essential for
maintaining competitive advantage in modern industries. The improved workflow and resource utilization
indicated that the Smart SSMAC not only benefits individual workers but also enhances overall
production line efficiency. This holistic improvement aligns with the goals of Industry 4.0, which
emphasizes interconnected and intelligent production systems.

The adaptability of the Smart SSMAC to various assembly tasks and environments need to be
further evaluated for its versatility and potential for widespread adoption across different sectors. The

study was conducted in a specific controlled environment, which might not have fully captured the
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variability of real-world manufacturing conditions. Future research should explore the Smart SSMAC's
performance in diverse settings and with different product types. Although the Smart SAMC improved
efficiency for inexperienced/novice operators, the extent of improvement varied. Further investigation is
needed to understand how the system performs with a broader range of skill levels (highly skilled,
moderately skilled and unskilled) and in different operational contexts. The study focused on short-term
performance metrics. Long-term reliability and maintenance considerations were not extensively
analysed, which should be addressed in future evaluations. Considering the limited batch size and the
high frequency of batch repetition, implementing a scheduling system and an optimized scheduling
algorithm can further enhance the financial benefits for the MSME. Since the MSME operates based on
both internal orders driven by forecasting and external customer orders, there is an opportunity to analyze
order sequencing and frequency. By applying a suitable production scheduling technique or algorithm,
setup time can be minimized. Additionally, the MSME may plan to expand the number of Smart
SSMACs and explore the possibility of a parallel machining environment to improve efficiency [72,
73].

This research contributes to the understanding of how advanced assembly technologies can enhance
industrial efficiency and accuracy. The study provides empirical data and insights into the benefits of
integrating smart technologies in manufacturing processes. The development and implementation of the
Smart SSMAC offer a practical example of how technology can address common challenges in assembly
operations. The findings provide a foundation for further research into optimizing assembly processes and
exploring additional technological advancements.

The findings from the implementation of the SAT/Smart SSMAC underscore its potential as a
transformative tool in the landscape of industrial assembly, particularly in the context of Industry 4.0.
The significant improvements in worker efficiency, assembly accuracy, and operational efficiency

highlight the effectiveness of integrating advanced technologies into traditional assembly processes.
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