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ABSTRACT 
  
  The concepts of antiderivation and biderivation were first introduced for right Leibniz algebras in 
1993.  In this paper, we extended these definitions to left Leibniz algebras and developed Maple software 
programs specifically for computing derivations and antiderivations of Leibniz algebras.  As an application, 
we provided a complete classification of biderivations for non- Lie Leibniz algebras of dimensions up to 
three over the complex field. 
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Introduction 
 The concept of biderivations, initially introduced by Brešar [1] in 1995 for associative rings and 
extended to Lie algebras by Wang, Yu, and Chen [2] in 2011, has garnered significant attention due to its 
broad applicability across various fields [3]. Leibniz algebras, first explored by Bloh [4] in 1965 and later 
introduced by Loday [5] in 1993 as a generalization of Lie algebras, have been extensively studied since 
then [6-10]. This broader framework allows Leibniz algebras to model structures in various mathematical 
and physical contexts, such as noncommutative geometry, deformation theory, and string theory. Their rich 
structure has also found applications in homology theory and the study of algebraic operads. However, in 
the literature, some of these results are proved for left Leibniz algebras and some are proved for right Leibniz 
algebras. Loday [5] provided definitions of derivation, antiderivation, and biderivation for right Leibniz 
algebras. Recent work by Mancini [9] in 2023 classified low-dimensional right Leibniz algebras with a focus 
on biderivations. In this paper, following Barnes [6], we focus on left Leibniz algebras and investigate their 
derivations, antiderivations, and biderivations. We begin by revisiting fundamental concepts of Leibniz 
algebras in the Preliminaries, delineating the notion of derivation, antiderivation, and biderivation for right 
Leibniz algebras. We then extend these definitions to left Leibniz algebras, establish their basic properties, 
and present Maple software algorithms for computing derivations and antiderivations. Finally, in the last 
section, we utilize these algorithms to classify biderivations in two- and three-dimensional non-Lie left 
Leibniz algebras over the complex field, using the classification given by Demir, Misra, and Stitzinger [7]. 
 
Preliminaries 
 Let  be an algebraically closed field with characteristic zero. A (left) Leibniz algebra  is an 
-vector space equipped with bracket  such that 

1.  is - bilinear, i. e. ,   and   for all 
. 

2. It satisfies the Leibniz identity:  for all . 
 

 When the bracket satisfies  for all , the Leibniz identity becomes the Jacobi identity 
  for all .  Thus, the Leibniz algebra can be viewed as a 

generalization of the Lie algebra. 
 
 A derivation of a Leibniz algebra  is an -linear map  satisfying 

 for all . 
The set of all derivations of a Leibniz algebra  is denoted by .  It is known that  is a Lie 
algebra with the commutator bracket  for all . 
 
Example 1 Let  be a left Leibniz algebra and .  Define the left multiplication operator  
by  for all . Then for all , we have 

. 
Thus,  is a derivation. 
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 Let .  Define the right multiplication operator  by  for all . 
A right Leibniz algebra is defined as a vector space equipped with a bilinear multiplication such that the 
right multiplication operator  is a derivation.  Throughout this paper, unless otherwise stated, the term 
‘ Leibniz algebra’  specifically refers to the left Leibniz algebra.  As illustrated by the following example, a 
left Leibniz algebra is not necessarily a right Leibniz algebra. 
 
Example 2 Let  be a 2-dimensional vector space with the basis . Define 

 
and extend this to all elements in  by linearity.  Note that  is not a Lie algebra  
because .  With this bracket structure,  forms a left Leibniz algebra.  
However, since   but  , it follows that 

. Hence,  is not a right Leibniz algebra. 
 
 Let  and  be two subspaces of a Leibniz algebra .  Then we denote the subspace 

 by .  A subspace  of a Leibniz algebra  is an ideal of  if  
and .  Given any Leibniz algebra , we denote .  It is known that 

 is an abelian ideal of  [7]. 
 
 A module of a Lie algebra  is a vector space  with an operation  such that for 
all , and , 

1. , 
2. , 
3. . 

 
Loday [ 5]  introduced the notions of antiderivation and biderivation for right Leibniz algebras as 

follows. 
 An antiderivation of a right Leibniz algebra  is an -linear map  such that 

 for all . 
The set of all antiderivations of a Leibniz algebra  is denoted by . 
 A biderivation of a right Leibniz algebra  is a pair  where  is a derivation and  is an 
antiderivation, such that 

 for all . 
The set of all biderivations of a Leibniz algebra  is denoted by . 
 
 In [9], Mancini showed that  has a -module structure with the operation 

 
for all  and .  He also showed that  has a Leibniz algebra structure 
with the bracket  by 
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for all  and . 
 
Antiderivations and biderivations 
 Motivated by results for right Leibniz algebras in [9], we define antiderivation and biderivation of 
left Leibniz algebras and study their properties. Note that the definition of derivation of left Leibniz algebras 
is the same as in the case of right Leibniz algebras. 
 
Definition 1 An antiderivation of a left Leibniz algebra  is an -linear map  such that 

 for all . 
The set of all antiderivations of a left Leibniz algebra  is also denoted by . 
Example 3 Let  be a left Leibniz algebra and . Consider the right multiplication operator  
by  for all . Then for all , we have 

. 
Thus,  is an antiderivation. 
 
Proposition 1 The set of antiderivations of a left Leibniz algebra  has a - module structure with 
the operation 

 
for all  and .  
Proof. Let , , and . Then 

 

Thus, . Also, 

 

, 

 

Hence,  is a -module.  
 
Definition 2 Let  be a left Leibniz algebra. A biderivation of  is a pair 

 
where  is a derivation and  is an antiderivation, such that 

 for all . 
The set of all biderivations of a left Leibniz algebra  is also denoted by . 
 Define the bracket  by 



Sci. Ess. J. Vol. 40 No. 2 (2024)  49 

 

 
for all . Observe that for all ,  

  
as . Then we have the following proposition. 
 
Proposition 2  is a left Leibniz algebra. 
Proof.  Note that  is a vector space over  since the bracket of  is - bilinear.  Let 

and .  Clearly,  and
. We also obtain that 

 

Similarly, we have 

 

Hence,  is bilinear. Consider 

 

and 

 

Thus, 
 

which implies that the Leibniz identity holds. Therefore,  is a left Leibniz algebra. 
 
An algorithm for finding derivations  

Motivated by the program in [10], we consider the -dimensional Leibniz algebra  with the basis 
 with  for .  Let  be a derivation and 

 for .  We construct the system of equations on the basis  
as follows: 

 

 

for all . Due to the property of derivation, we have  
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for all . Hence, we obtain the following algorithm to find derivations of a given finite dimensional 
complex Leibniz algebra using Maple. We will implement the algorithm in Maple to find derivations of two 
and three-dimensional non-Lie Leibniz algebras in the last section. 
 

 
 
Remark 1 In [10], Said Husain, Rakhimov and Basri also provided an algorithm for finding derivations of 
Leibniz algebras. However, it seems there is a typo in their program causing an error on Maple. 
 
 
 
 
 

derivation := proc(L, n)  
local i, j, k, t, s1, s2, m, d, sols, eqns, Der;  
eqns := {};  
d := matrix(n, n);  
Der := matrix(n, n);  
for i to n do  
    for j to n do  
        for m to n do  
            s1 := sum(L[i, j, k]*d[m, k], k = 1 .. n);  
            s2 := sum(L[k, j, m]*d[k, i]+L[i, k, m]*d[k, j], k = 1 .. n); 
            eqns := union(eqns, {s1 = s2});  
        end do  
    end do  
end do;  
sols := [solve(eqns, useassumptions)]; 
t := nops(sols);  
for i to t do  
    for j to n do  
        for k to n do  
            Der[k, j] := subs(sols[i], d[k, j]);  
        end do  
    end do  
end do;  
print("Derivation := ", Der);  
end proc: 
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Example 4 Let  be a two-dimensional Leibniz algebra with the non-zero bracket in  given by . 
By using the above algorithm in Maple 15, we obtain derivations of  as follows: 
 

 
 
An algorithm for finding antiderivations  

Consider the - dimensional Leibniz algebra  with the basis  with 
  for .  Let  be an antiderivation and   for 

. We construct the system of equations on the basis  as follows: 

 

 

for all . Due to the property of antiderivation, we have    

 

for all .  Hence, we obtain the following algorithm to find antiderivations of a given finite 
dimensional complex Leibniz algebra using Maple.  We will implement the algorithm in Maple to find 
antiderivations of two and three-dimensional non-Lie Leibniz algebras in the last section.  
 

Input: 

L := array(sparse, 1..2, 1..2, 1..2, [(1,1,2)=1]):  
derivation(L,2); 

Output: 

Derivation :=  
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Example 5 Let  be a two-dimensional Leibniz algebra with the non-zero bracket in  given by . 
By using the above algorithm in Maple 15, we obtain antiderivations of  as follows: 
 

 

antiderivation := proc(L, n)  
local i, j, k, t, s1, s2, m, D, sols, eqns, AntiDer;  
eqns := {};  
D := matrix(n, n);  
AntiDer := matrix(n, n);  
for i to n do  
    for j to n do  
        for m to n do  
            s1 := sum(L[i, j, k]*D[m, k], k = 1 .. n);  
            s2 := sum(L[i, k, m]*D[k, j], k = 1 .. n)  
                  -sum(L[j, k, m]*D[k, i], k = 1 .. n); 
            eqns := union(eqns, {s1 = s2});  
        end do  
    end do  
end do;  
sols := [solve(eqns, useassumptions)];  
t := nops(sols);  
for i to t do  
    for j to n do  
        for k to n do  
            AntiDer[k, j] := subs(sols[i], D[k, j]);  
        end do  
    end do  
end do;  
print("AntiDerivation := ", AntiDer);  
end proc: 

 

Input: 

L := array(sparse, 1..2, 1..2, 1..2, [(1,1,2)=1]):  
antiderivation(L,2); 

Output: 

AntiDerivation :=  
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Derivations, antiderivations and biderivations of low-dimensional non-Lie Leibniz algebras  
 In this section, we apply the algorithms from previous sections to low-dimensional non-Lie complex 
Leibniz algebras.  We first observe that if  is a non- Lie Leibniz algebra, then .  Also, 

 because  is abelian.  Thus, there does not exist any non- Lie Leibniz algebra with 
. Let  be a non-Lie Leibniz algebra of dimension 2. Let  denote the ordered basis for  given 

by . By [7],  is isomorphic to one of the following algebras with the nonzero brackets given: 
 

 Applying the algorithms, we obtain the following result. 
 
 The derivations and antiderivations of two- dimensional non- Lie Leibniz algebras are given as 
follows. 
 
Table 1 Derivations and antiderivations of two-dimensional non-Lie Leibniz algebras. 

     
 

 
2 

 
2 

 
 

1 
 

2 

 
 To find a basis for , we let  and .  Thus  
and  where  satisfying the following conditions 

 for . By straightforward computations, we obtain the following result. 
 
 The biderivations of two-dimensional non-Lie Leibniz algebras are given as follows. 
 
Table 2 Biderivations of two-dimensional non-Lie Leibniz algebras. 

   
 

 
3 

 
 2 

 
 Now let  be a non- Lie Leibniz algebra of dimension 3.  Let  denote the ordered basis for  
given by . By [7],  is isomorphic to one of the following algebras with the nonzero brackets 
given: 
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Applying the algorithms, we obtain the following result. 
 

 The derivations and antiderivations of three- dimensional non- Lie Leibniz algebras are given as 
follows. 
 
Table 3 Derivations and antiderivations of three-dimensional non-Lie Leibniz algebras. 

     
  3  3 

  5  5 

  4  5 

 

 

4 

 

5 

 

 

4 

 

5 

 

 

3 

 

5 

 

 

3 

 

3 
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Table 3 Derivations and antiderivations of three-dimensional non-Lie Leibniz algebras. (cont.) 

 
 

 

 

 
 

 

3 

 

3 

 

 

2 

 

3 

 

 

2 

 

3 

 

4 

 

 

2 

 

3 

 

 

2 

 

3 

 
Remark 2 We observe that by suitable change of basis, the isomorphism classes of derivation algebras in 
Table 1 and Table 3 coincide with the isomorphism classes given in [8]. For example, 
 

 

 
  To find a basis for , we let  and .  Thus 

 and  where  satisfying the 
following conditions  for .  We consider each Leibniz algebra 
isomorphism class case by case. By straightforward computations, we obtain the following result. 
 
 The biderivations of three-dimensional non-Lie Leibniz algebras are given as follows. 
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Table 4 Biderivations of three-dimensional non-Lie Leibniz algebras. 

   
  5 

  9 

 

 

5 

 

 

5 

  6 

  6 

  4 

  4 

  3 

  4 

 

6 

  4 

  4 

 
Remark 3 Our Maple software algorithms can be used for any finite- dimensional Leibniz algebra.  In this 
work, we focus on low- dimensional Leibniz algebras due to the computational feasibility of explicit 
classification and their ability to reveal important structural properties that can guide studies in higher 
dimensions. 
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