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ABSTRACT 
  This paper investigated the electrical and gas-sensing properties of SnO2 nanoporous synthesized 
via the simple heat-up method. The I-V characteristics of the SnO2 nanoporous revealed Ohmic contact 
materials. The SnO2 nanoporous sensor was tested upon exposure to 50 ppm ammonia gas at 250 C. 
It showed an immediate response to ammonia with a recovery time of 200 s in the first cycle. 
Additionally, the SnO2 nanoporous sensor was tested for its response to ammonia gas at concentrations 
ranging from 10 ppm to 90 ppm at a temperature of 250 C. The results indicated that the SnO2 
nanoporous sensor responded to ammonia gas at low concentrations, even as low as 10 ppm. 
Furthermore, the relative response value of the SnO2 nanoporous sensor demonstrated an increase in 
relative response value with increasing NH3 concentration. 
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Introduction 
     Currently, semiconductor metal oxide gas sensors, especially nanostructured metal oxides, 

have gained much attention from research communities due to their properties, such as high response, 
fast response and recovery time, room temperature operation, and low cost [1–4]. The most popular 
semiconductor metal oxide gas sensor is tin dioxide. Tin dioxide (SnO2) is an N-type semiconductor 
with a stable wide bandgap of 3.6 eV [5]. SnO2 nanostructured material has been researched for its 
ability to detect various gases, including nitrogen dioxide (NO2), formaldehyde gas (HCHO), carbon 
dioxide (CO2), carbon monoxide (CO), hydrogen sulfide (H2S), ammonia (NH3), and ethanol, among 
others [6–11]. However, tin dioxide nanomaterials can be synthesized by using various methods such 
as thermal evaporation, chemical vapor deposition (CVD), physical vapor evaporation (PVD), sol-gel, 
hydrothermal, atomic layer deposition (ALD), microwave-assisted, precipitation, and electrospinning 
[6,12–18]. These methods have their advantages and disadvantages for synthesizing SnO2 nanomaterials. 
The advantages of these methods for the synthesis of SnO2  nanomaterials include high crystallinity, 
selective deposition, and high purity. However, these methods can also have disadvantages such as high 
equipment costs, complexity, high temperatures, high-pressure vessels, hazardous precursor gases, and 
long processing time [19]. One interesting method for synthesizing semiconductor nanomaterials is the 
heat-up method because it is relatively simple, uncomplicated, low-cost, and cost-effective [20, 21]. 
Moreover, it can produce various nanostructured materials, including oxides, metals, and semiconductors. 
However, the heat-up method has the following limitations: temperature instability, difficulties with 
product reproducibility, and difficulties in controlling the size and shape [22, 23]. 

     Ammonia gas is a toxic, colorless, odorous, and corrosive gas with the general chemical 
name of ammonia anhydrous. It is an inorganic substance with the molecular formula NH3. Ammonia 
is used in various chemical industries, such as fertilizer production, petrochemical equipment, beverage 
production, the automotive industry, explosives, plastics, and pesticides. Ammonia is widely used in the 
refrigeration industry as a refrigerant for various products, including vegetable and fruit juices, soft 
drinks, breweries and wineries, meat processing, cold storage warehouses, and ice rinks for sports [24]. 
However, ammonia has highly toxic and corrosive properties that can harm the skin, eyes, throat, and 
lungs of those who inhale it. Therefore, it is crucial not to inhale it above the safe level, as it can cause 
life-threatening diseases. The Occupational Safety and Health Administration (OSHA) has set an 
acceptable exposure limit for ammonia to humans at 25 ppm for 8 hours and 35 ppm for 15 minutes 
[24, 25].    

     A research study on the detection of ammonia gas by using tin dioxide nanomaterials has 
been reported. Phuoc et al. synthesized SnO2 porous nanofiber by using a facile electrospinning method 
and examined its response to H2S gas at concentrations of 0.1-1 ppm and temperatures of 150 to 450 °C. 
The fabricated sensor demonstrated fast response and recovery times, with a gas response of 15.2 [26]. 
Shruthi et al. fabricated Ag:Y2O3–SnO2 core‑shell‑based nanostructured sensor by using a simple slurry 
coating method. The Ag:Y2O3–SnO2 sensor was tested for ammonia concentrations ranging from 1 ppm 
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to 100 ppm at room temperature. The sensor exhibited rapid response (2 s) and recovery times (8 s), 
with the highest response [27]. 

    In this study, we present the SnO2 nanoporous materials synthesized using a simple heat-up 
method at temperatures of 110 °C and 240 °C. Additionally, we report on the dynamic response and 
recovery cycle of SnO2 nanoporous when exposed to NH3 gas concentrations of 50 ppm at a temperature 
of 2 5 0  ° C. To confirm the results of this study, we continued to observe the dynamic response and 
recovery cycle of SnO2 nanoporous when exposed to NH3 gas concentrations ranging from 10 ppm to 
90 ppm at a temperature of 250 °C. 
 
Materials and Methods  
Fabrication of SnO2 nanoporous 

The SnO2 nanoporous were prepared by the heat-up method. Firstly, 3.102 g of Tin (IV) bis 
(acetylacetonate) dichloride and 2.069 g of 1,2-hexadecane-diol were added to dibenzyl ether (60 mL), 
which served as the solvent in a three-necked flask, as shown in Figure 1. Then, 6 mL of oleyl amine 
was added as a reducing and growth agent to regulate the crystal growth. After that, the solvent in a 
three-necked flask was heated at 110 C for 30 min under oxygen-free vacuum conditions and then 
heated to 240 C for 30 min. Next, the sample was washed and centrifuged three times with ethanol. 
Finally, the sample was dispersed in deionized (DI) water [20, 21]. 

 
Figure 1 Schematic of SnO2 nanoporous preparation by the heat-up method. 

 
Characterization of SnO2 nanoporous 

The morphology of the SnO2 nanoporous was investigated by using scanning electron 
microscopy (SEM, Hitachi S-4800). Then, the crystal structure of the sample was analyzed by using an 

IV. Heating at 240°C for 30 min 

Heating at 110°C for 30 min 
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X-ray diffraction technique (XRD, Rigaku SmartLab High-Resolution X-ray Diffractometer (HR-XRD) 
using Cu Ka (λ = 1.5418 Å) at 45 kV and 200 mA). X-ray photoelectron spectroscopy (XPS, K-alpha, 
Thermo Scientific using conventional monochromatic Al Kα radiation (hν = 1486.6 eV) with θ = 0° 
(normal emission) and a pass energy of 50 eV was used to examine the sample components.  
 
Fabrication of SnO2 nanoporous sensor 

The synthesized SnO2 nanoporous in DI water were dropped onto the interdigitated electrodes 
(IDE) electrode (Cr/Au, 3/70 nm) with a volume of 2 μl, as shown in Figure 2. Then, the sample was 
heated in an N2 atmosphere for 3 minutes at 300 C to improve ohmic contact. 
 

 
 

Figure 2 Schematic of SnO2 nanoporous sensor fabrication. 
 

Measurement of the electrical and gas-sensing properties 
The electrical properties of the sample were measured in the range of −3 V to 3 V at 

temperatures of room temperature (RT) and 250 °C. The sensitivity of the SnO2 nanoporous sensor was 
measured by using a Keithley-4200 semiconductor parameter analyzer at 250 °C. The sample's 
resistance, current, and response were examined by exposing them to NH3 gas at concentrations of 50 
ppm and different concentrations ranging from 10-90 ppm. The heater and gas flow were controlled by 
a Hanyoung Nux PX7 and a Victor SR312, respectively. The relative response can be calculated via the 
following equation (1) 

  a g

a

| R R |
RH 100%

R


       (1) 

where RH is relative response, Ra is resistance in an air atmosphere, and Rg is resistance in an ammonia 
atmosphere [28].  
 
Results and discussion 

The sample's surface morphology was investigated using the SEM technique, as shown in Figure 
3(a-b). The SEM images showed an area with a cracked porous structure at a magnification 4,000x (bar 
1 μm) and 16,000x (bar 300 nm). Figure 3(c) shows high-magnification SEM images (magnification 
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30,000x, bar 200 nm). It can be seen that the surface morphology exhibits numerous pores in the SnO2 
materials, which greatly helps in improving the response of the gas sensor. However, the pore diameters 
vary in the range of 10-100 nm. 

The crystal structure of the SnO2 nanoporous was investigated by the X-ray diffractometer 
technique, as shown in Figure 4. The XRD pattern (Figure 4) shows the SnO2 phase at planes of (110), 
(101), and (211), which correspond to the peaks of 26.10, 33.55, and 51.35, respectively. Moreover, 
the results indicated a tetragonal crystal system according to the JCPDS pattern (41-1445) [29, 30]. 
Additionally, the XRD pattern of the sample showed low intensity and small peaks. As a result, the 
SnO2 nanoporous were relatively low in crystallinity. The atomic percentages of the sample were 
investigated by the X-ray photoelectron spectroscopy technique, as shown in Table 1. The atomic 
percentages of Sn, O, and C were 18.67, 45.33, and 36.00, respectively. Therefore, the ratio of Sn and 
O atoms was approximately 1:2. 

 

     
                                            
Figure 3 (a) Low and (b) high magnification SEM images of the SnO2 nanoporous. 

 

(a) (b) 

(c) 
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Figure 4 XRD pattern of the SnO2 nanoporous with JCPDS file No.41-1445.            

                
 

Table 1 Atomic percent of the SnO2 nanoporous 
Elements Atomic percent (%) 
Sn 3d 18.67 
O 1s 45.33 
C 1s 36.00 

 
Figure 5 shows the XPS patterns of the SnO2 nanoporous with elemental descriptions. The 

survey spectrum of the SnO2 nanoporous (Figure 5(a)) demonstrated that the sample consisted of peaks 
from the elements Sn, O, and C. Figure 5(b) shows the peaks of the Sn element. The Sn 3d symmetrical 
peaks appeared at 495 . 1  eV and 486.7  eV, corresponding to Sn 3d3/2 and Sn 3d5/2, respectively. 
Moreover, the binding energy separation between Sn 3d3/2 and Sn 3d5/2 peaks was 8.4 eV. This result 
could be attributed to the binding energy of the Sn4+ and was consistent with previous reports [31, 32]. 
Figure 5(c) demonstrates the O element peaks, with O 1s appearing at 533.1 eV, 531.8 eV, and 530.6 
eV corresponding to adsorbed oxygen (Oads), defective oxygen (Ov) and lattice oxygen (OL), respectively 
[32].  

Figure 6 demonstrates the I-V characteristic curves of the SnO2 nanoporous measured at 
temperatures of RT (red line) and 250 C (black line). The results showed linear relations and indicated 
ohmic contact materials [33]. In addition, the resistance values were calculated via the I-V linear relation 
slope. Therefore, the resistance values of the SnO2 nanoporous were 6.54104 M and 2.45102 M 
measured at temperatures of RT and 250 C, respectively. The results suggested that the electrical 
conductivity of the SnO2 nanoporous was greater when measured at 250C than when measured at RT.  
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Figure 5 XPS patterns of the as-synthesized SnO2 nanoporous: (a) survey spectrum and high-resolution 
spectra of (b) Sn 3d, (c) O 1s, and (d) C 1s. 
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Figure 6 I-V curves of SnO2 nanoporous measured at RT and 250 C. 

 
Figure 7(a) shows the dynamic response and recovery time cycles of the SnO2 nanoporous 

sensor upon exposure to NH3 gas with a concentration of 50 ppm at 250 C. The response and recovery 
test cycle were repeated two times. The results unambiguously showed that the two cycles' response 
values differed. The first cycle had an immediate response to the NH3 gas, with a response of about 
60%. Then, the response value of the first cycle decreased to about 40%. According to Figure 7(b), the 
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first cycle recovery time (trec) was 200 s. The high-resolution second response cycle of the SnO2 
nanoporous sensor (Figure 7(c)) showed a slow response time, with a response time value (tres) of 
approximately 80 s, which is clearly seen as a bend in the response time curve. In addition, the recovery 
time (trec) of this cycle was 300 s. This result showed that the sensor had a slower response to ammonia 
gas and a longer recovery time.  
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Figure 7 (a) Relative response curves of SnO2 nanoporous sensor upon exposure to NH3 gas 
concentration of 50 ppm at 250C. The high-resolution response of (b) first and (c) second cycle. 
 
      However, the SnO2 nanoporous sensors were tested for their response to NH3 gas at 
concentrations ranging from 10 ppm to 90 ppm at 250 C, as shown in Figure 8, and the response and 
recovery time of the SnO2 nanoporous sensor demonstrated an increase in response time with increasing 
NH3 concentration [34, 35]. According to Figure 8, the SnO2 nanoporous sensor had the lowest response 
at a concentration of 10 ppm and greatest at a concentration of 90 ppm. Furthermore, the response and 
recovery cycles of the SnO2 nanoporous sensor at concentrations ranging from 10 ppm to 50 ppm were 
similar. When the response value reached its maximum value, it gradually decreased. However, the 
response and recovery cycles of the SnO2 nanoporous sensors at NH3 concentrations ranging from 70 
ppm to 90 ppm exhibited a similar curve bending in the response time.  
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Figure 8 The response and recovery cycles of the SnO2 nanoporous sensor were investigated upon 
exposure to NH3 gas in various concentrations ranging from 10 ppm to 90 ppm at 250 C.  
 
 Consequently, their response to NH3 gas reached a stable state with response values of 
approximately 61%, 66%, and 71%, corresponding to concentrations of 70 ppm, 80 ppm, and 90 ppm, 
respectively. Moreover, the response and recovery cycle of the SnO2 nanoporous sensor at an NH3 gas 
concentration of 60 ppm exhibited the most stable response values compared to the cycles at other 
concentrations. This cycle showed no bending in the response time and maintained a constant response 
value during the presence and absence of ammonia gas in the chamber. Therefore, the results suggested 
that the SnO2 nanoparticle sensor was suitable for detecting ammonia gas at a concentration of 60 ppm. 
The response remained stable for 1800 s with a response value of approximately 56%. 
 

Figure 9 illustrates the gas sensor mechanism of the SnO2 nanoporous sensor in an ammonia 
atmosphere at 250 C. The chemical reaction of the SnO2 nanoporous sensor in air and ammonia 
atmospheres can be described via the following equation (2-8), respectively [28, 34, 35].  
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In air, the initial resistance of the SnO2 nanoporous was high because the oxygen at the surface 
area of the SnO2 nanoporous was capturing the nearly free electrons, as shown in the reaction equation 
(4). Therefore, the surface area of the SnO2 nanoporous had a low free electron concentration. 
Additionally, the oxygen atoms become oxygen ions. As a result, the space charge region width became 
wider. However, when the surface area of the SnO2 nanoporous was exposed to ammonia gas, the space 
charge region width became narrow because the oxygen ions reacted with ammonia gas, as shown in 
the reaction equation (6-7). This reaction resulted in free electrons from the previous reaction being 
released onto the surface area of the SnO2 nanoporous, causing the resistance of the SnO2 nanoporous 
to be lower than the initial resistance value [5, 36-38].     

 

 
Figure 9 Schematic of the sensing mechanism of SnO2 nanoporous (a) in air and (b) NH3 atmospheres. 
 
Conclusions 

In summary, SnO2 nanoporous were successfully synthesized by using the simple heat-up 
method. The surface morphology of the as-synthesized sample was investigated by using SEM 
techniques, demonstrating a cracked, porous structure for the SnO2 nanoporous. The crystal structure of 
the SnO2 nanoporous was analyzed by using XRD techniques, revealing a tetragonal crystal structure 
for SnO2. The I-V characteristics of the SnO2 nanoporous exhibited ohmic contact materials. The SnO2 
nanoporous sensor showed a fast response and recovery time when exposed to NH3 gas at a concentration 
of 50 ppm and a temperature of 250 °C. Additionally, this sensor responded to NH3 gas at low 
concentrations of 10 ppm, with the response value increasing as the NH3 concentration increased. 
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