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Distribution of Bcl-2 Immunoreactive Cells in Brain
of Thai Medaka, Oryzias minutillus (Teleostei)
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ABSTRACT

In this study, we examined the histological distribution of Bcl-2 protein in the
fish brain of Thai medaka, Oryzias minutillus, by means of immunostaining procedures.
In forebrains, no Bcl-2 immunoreactive (IR) cells were stained in the part of telencephalon.
In contrast, IR cells were found along the part of diencephalon, but the expressions were weak.
In midbrains, IR cells were widely distributed throughout these portions. Moreover, in the
hypophysis, IR cells were strongly detected in the areas of proximal pars distalis and the pars
nervosa. In hindbrains, immunoreactive localizations of Bcl-2 were mostly found in the both of
metencephalon and myelencephalon parts. Distribution and localization of Bcl-2 IR cells were
not different between males and females of Thai medaka. Our results suggest that the distribution
of Bcl-2 protein may be region-specific expressions in Thai medaka brain but not sexual
dimorphism. It is the first report of Bcl-2 distribution protein in Thai medaka. We support that
immunohistological analysis can supply important data regarding the Bcl-2 distribution profile
of fish brain and can be able to contribute to systematic studies as animal model of teleost.
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Introduction
In many vertebrates, B-cell lymphoma (Bcl) 2 is a member of Bcl-2 family that

plays central roles in the regulation of apoptotic pathways in several tissues [1-3]. In teleost fish,
the Bcl-2 is critical mediators of the delicate balance between survival and apoptosis [4] and is
expressed in liver, ovary, testis and lymphoid organ of Atlantic cod, Gadus morhua, piau-jejo,
Leporinus taeniatus, gudgeon, Gobio gobio and zebrafish, Danio rerio, respectively [5-8].
Kratz et al. [9] also reported that the expressions of Bcl-2 family were found in the brain
of zebrafish. However, the data profiling of Bcl-2 in the teleost fish remain to be elucidated.

It is known that Thai medaka, Oryzias minutillus, is a relative genus of Japanese
medaka (Oryzias latipes, Teleostei) which is one of the best model organisms for experimental
vertebrate in various fields [10] such as cell biology [11], developmental biology [12] and
neurobiology [13]. This species, which is the smallest species among genus Oryzias, is widely
distributed in Thailand [14]. The body size of Thai medaka is about the half of Japanese medaka
[15]. Attributes of Thai medaka that should be encouraged its laboratory use include small
size and ease of maintenance in fresh water aquarium [10, 16].

As the aim of this study, we provided an anatomical distribution and cellular basis of
Bcl-2 immunoreactive cells in the brain of Thai medaka, Oryzias minutillus. Furthermore, we
believed that elucidation of the Bcl-2 distribution profile in the brain contribute to increasing our
knowledge of the Bcl-2 regulation in teleost fish.

Materials and methods
Fish

Adult Thai medaka of which standard length was 12-14 mm were captured in ponds
in suburbs of Bangkok, Thailand, from April to May 2010. This period was the non-breeding
season for Thai medaka [16]. Ten males or ten females were kept separately in aquaria with a
controlled 12: 12 hr light/dark photoperiod cycle at 26°C for 2 weeks, and fed ad libitum with
TetraMin (Tokyo, Japan). Their sexes were judged from the morphology of the secondary sex
characters of the dorsal and anal fins, according to the criteria of Ngamniyom et al. [15].

Immunohistochemistry of Bcl-2
Brains of male, female fish were dissected out from the bodies and fixed in Bouinûs

solution without acetic acid for 12h, and stored in 70% ethanol. Brain fish was precisely
separated to three parts, according to the criteria of Ishikawa et al. [17]. The part of tepencephalon
to the part of diencephalon was distinguished from midbrain as the forebrain. The part of nervus
opticus until the posterior end of tectum opticum was indentified such the midbrain. The
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hindbrain composed of the metencephalon and myelencephalon. Brain sections were described
in Fig. 1A and B. Paraffin sections of brain were prepared at 6 µm.

The primary antibody: anti-Bcl-2 (rabbit anti-Bcl-2 monoclonal antibody; Santa Cruz
biotechnology, Inc., OR., USA) was diluted 1: 10,000 (final peptide concentration, 0.02 µg/ml).
Those sections were incubated with the primary antibody for 16h, with the secondary anti-rabbit
antibody (Dako, Glostrup, Denmark) for 30 min, with streptavidin (Dako, Glostrup, Denmark)
for 30 min, and finally colorized with diaminobenzidine solution (Dojin Co. Ltd. Japan).
Those sections were stained with hematoxylin as a counter staining. Immunoreactive cells, which
gave brownish color in the brain, were observed under a light microscope (BX51 Olympus,
USA).

The unpaired Student t-test was used to examine differences statistically.

Fig. 1 Diagrammatic illustration of brain sections of Thai medaka (1A) and brain sections of
each part (1B). The numbers with alphabet letters in Fig. 1B were related to Fig. 2, 3,
4, 5 and 6.

A

B
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Nomenclature
We followed the neuroanatomical terms of Ishikawa et al. [17]. Other references

were listed in the index of abbreviations (Table 1).

Results
It was noted that in this study, distribution and localization of Bcl-2 immunoreactive

(IR) cells were not different between males and females of Thai medaka (unpaired Student t-test,
P > 0.05) (Table 1).

Table 1 Distribution of Bcl-2 protein in brains of thai medaka

Forebrain

Bcl-2 immunoreactive Number of Bcl-2 IR cell

Structure (abbreviation) (IR) cell Male Female

(mean ± SE) (mean ± SE)

bulbus olfactorius (BO) - - -

area dorsalis telencephali pars lateralis (DI) - - -

area dorsalis telencephali pars medialis (Dm) - - -

dorsal region of Dm - - -

area dorsalis telencephali pars posterior (Dp) - - -

lateral forebrain bundle (lfb) - - -

nucleus preopticus pars magnocellularis + 6.6 ± 0.7 5.7 ± 0.5

(Pom) [32]

nucleus preopticus pars parvocellularis + 8.3 ± 0.6 8.9 ± 0.4

(Pop) [32]

ventral region of Dm - - -

area ventralis telencephali pars dorsalis (Vd) - - -

area ventralis telencephali pars posterior (Vp) + 7.3 ± 0.4 8.1 ± 0.4

area ventralis telencephali pars ventralis (Vv) + 12.3 ± 0.6 9.8 ± 0.8

Midbrain

commissura ansulata (cans) - - -

commissura horizontalis (ch) - - -

fasciculus longitudinalis medialis (flm) + 4.3 ± 0.2 5.4 ± 0.3

granule population (G) [31] + 7.5 ± 0.6 9.3 ± 0.4

corpus glomerulosum pars rotunda (GR) + 3.5 ± 0.3 4.2 ± 0.6

hypophysis (H) + 22.5 ± 0.9 25.3 ± 0.8
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Table 1 (continue)

Forebrain

Bcl-2 immunoreactive Number of Bcl-2 IR cell

Structure (abbreviation) (IR) cell Male Female

(mean ± SE) (mean ± SE)

nucleus anterior tuberis (NAT) + 5.1 ± 0.2 6..3 ± 0.4

nucleus diffuses lobi inferioris (NDLI) - - -

nucleus gustatorius secundarius (NGS) + 6.4 ± 0.6 7.1 ± 0.7

nucleus interpeduncularis (NIP) - - -

nucleus nervi trochlearis (NIV) + 4.0 ± 0.5 5.3 ± 0.4

nucleus recessus lateralis (NRL) [32] - - -

nucleus recessus postedoris (NRP) [32] - - -

nucleus raphes (NRHP) + 18.3 ± 0.5 23.4 ± 1.0

nucleus posterioris periventricularis NPPv) [32] + 7.0 ± 0.7 11.1 ± 0.8

nucleus ventralis tuberi (NVT) [33] - - -

nucleus preglomerulosus pars medialis (PGm) - - -

medial reticular zone (RFm) + 31.6 ± 1.7 35.3 ± 1.6

torus longitudinalis (TL) - - -

tectum opticum (TO) - - -

torus semicircularis (TS) - - -

tractus mesencephalocerebellaris (tmc) - - -

tractus tectobulbaris (ttbc) - - -

tractus tectobulbaris cruciatus (ttbc) - - -

valvula cerebella (VC) + 3.2 ± 0.3 4.7 ± 0.6

ventriculus mesencephali (vem) + 5.4 ± 0.6 4.3 ± 0.4

nucleus ventromedialis thalami (VM) + 6.6 ± 1.1 12.1 ± 1.6

lemniscus lateralis (ll) + 4.4 ± 0.4 3.7 ± 1.0

nervus oculomotorius (nlll) - - -

Sulcus limitans telencephali [33] - - -

Hindbrain

cellula Mauthneri (M) + 10.2 ± 0.9 11.9 ± 1.1

commissura ansulata (cans) - - -

eminentia granularis (EG) - - -

fasciculus longitudinalis medialis (flm) + 6.1 ± 0.6 7.3 ± 0.5

magnocellular octavus nucleus (MCN) + 7.8 ± 0.3 9.3 ± 0.7
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Table 1 (continue)

Forebrain

Bcl-2 immunoreactive Number of Bcl-2 IR cell

Structure (abbreviation) (IR) cell Male Female

(mean ± SE) (mean ± SE)

nervus lineae lateralis anterior (nALL) + 11.0 ± 0.4 7.9 ± 1.2

nucleus raphes (NRPH) - - -

nervus octavus (nVlll) - - -

nucleus motorius nervi vagi (NXm) - - -

medial reticular zone (RFm) - - -

tractus tectobulbaris cruciatus (ttbc) - - -

tractus tectobulbaris rectus (ttbr) - - -

secondary octaval population (SO) [31] + 14.8 ± 0.8 13.7 ± 0.7

lobus vagi (XL) + 19.6 ± 1.4 17.7 ± 0.9

radix descendens nervi trigemini (tv) + 4.6 ± 0.5 3.6 ± 0.6

tractus vestibulosplnalis (tvs) + 3.7 ± 0.2 4.2 ± 0.5

nucleus motorius nervi vagi (NXm) + 5.1 ± 0.6 4.2. ± 0.4

Note: The detection of Bcl-2 immunoreactive cells was +, and no detection was -. Male or
female group consisted of ten samples of fish brains.

Bcl-2 immunoreactive cells in the forebrain of Thai medaka
No distribution of Bcl-2 IR cells was observed in any area of telencephalon (Table 1,

Fig. 2A). In diencephalon part, Bcl-2 IR cells were found in area ventralis telencephali pars
dorsalis (Vd) and area ventralis telencephali pars ventralis (Vv) (Fig. 2B). The staining intensity
was numerous in area of nucleus preopticus pars parvocellularis (Pop) but was weak near the
area of nervus opticus (nll) (Fig. 2B and 3A). Bcl-2 IR cells were also detected in area ventralis
telencephali pars posterior (VP) and area of preopticus pars magnocellularis (Pom) (Fig. 3A).



SWU Sci. J. Vol. 27 No. 1 (2011)136

Fig. 2 Distribution of Bcl-2 immunoreactive cells in forebrains of Thai medaka. Rostal part
(2A) and caudal part (2B). Bars = 200 µm

A

B
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Fig. 3 Distribution of Bcl-2 immunoreactive cells in caudal end of forebrain (3A), rostral part
of midbrain (3B) and hypophysis (3C). Bars = 200 µm.

Bcl-2 immunoreactive cells in the midbrain of Thai medaka
Bcl-2 IR cells were found along midbrain part (Table 1). Immunoreactivities of

Bcl-2 were localized in areas of nucleus posterioris periventricularis (NPPV), nucleus anterior
tuberis (NAT) (Fig. 3B) and valvula cerebelli (VC) (Fig. 4B). In hypophysis, Bcl-2 IR cells were
observed intensely in proximal pars distalis (PPD) and the pars nervosa (Ne) (Fig. 3C). Localization
of immunoreactive cells was found near the area of ventriculus mesencephali (Vem) (Fig. 3B).
Bcl-2 IR cells were surrounded the areas of corpus glomerulosum pas rotunda (GR) and lemniscus
lateralis (ll) (Fig. 4A and B). In the end part of midbrain, Bcl-2 IR cells were localized at
fasciculus longitudinalis medialis (flm), granule population (G), nucleus gustatoris secundarius
(NGS), medial recticular zone (RFm) and nucleus raphes (NRPH) (Fig. 4B and 5A).

A

B

C



SWU Sci. J. Vol. 27 No. 1 (2011)138

Fig. 4 Distribution of Bcl-2 immunoreactive cells in midbrains. Middle part (4A) and caudal
part of midbrain (4B) Bars = 200 µm.

Bcl-2 immunoreactive cells in the hindbrain of Thai medaka
Bcl-2 IR cells were observed throughout hindbrain part (Table 1). Immunoreactivities

of Bcl-2 were mostly found in corpus cerebelli (CE) and RFm (Fig. 5B, 6A and B). In cellula
Mauthneri (M), there was the cluster of Bcl-2 IR cells (Fig. 5B). Cells with a thick and thin
apical process were both immunoreactive in areas of RFm, M (Fig. 5B and 6A) and flm
(Fig. 6B). However, it was hard to detect Bcl-2 IR cells in fasciculus longitudinalis medialis
(Fig. 5B, 6A and B). IR cells were abundant in the nucleus medialis (MN) and secondary octaval
population (SO) (Fig. 5B and 6A). Positive staining cells were also detected widely in magnocellular
octavus nucleus (MCN) and nervus lineae lateralis anterior (nALL) (Fig. 5B, 6A). They were
also present in high numbers inside area of lobus vagi (XL) and ventral edge of nucleus motorius
nervi vagi (NXm) (Fig. 6B). In radix decendens nervi trigemini (tV) and tractus vestibulosplnalis
(tvs), the weak IR cells were found in dorsal edges (Fig. 6B).

B

A
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Fig. 5 Distribution of Bcl-2 immunoreactive cells in caudal end of midbrain (5A) and rostral
part of hindbrain (5B). Bars = 200 µm.

B

A
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Fig. 6 Distribution of Bcl-2 immunoreactive cells in hindbrains. Middle part (6A) and caudal
part of hindbrain (6B). Bars = 200 µm.

B
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Discussion
In this study, we tried to clarify the distribution profile of Bcl-2 protein in fish by

means of immunohistochemical procedures and found that the Bcl-2 protein distribution was
brain region-specific. This finding was similar to previous reports of Vyas et al. [18], Zhang
et al. [19], Lutz and Prentice [20] and Sick et al. [21] that the expressions of Bcl-2 protein were
different in each brain region of human, rat and freshwater turtle (Trachemys scripta).
Bcl-2 protein may be evolutionarily conserved distribution feature of region-specific in the
brain of non-mammalian vertebrates to mammals.

Tsukahara et al. [22] and Forger et al. [23] reported that Bcl-2 protein levels in
brains were different between males and females. In Bcl-2 protein distribution, however, there
was not sex-specific between male and female brains. Therefore, Bcl-2 may exhibit sexual
dimorphisms only in the expression levels in brain.

The distribution of Bcl-2 was examined in forebrain of mammal species [24, 25].
Mooney and Miller [26] reported that the expression of Bcl-2 protein was detected along
diencephalon of rats. Shindler et al. [27] also reported that Bcl-2 was expressed in telencephalic
cell cultures for playing a supportive role to Bcl-xL in maintaining telencephalic cell survival.
In contrast, sections of telencephalon from Thai medaka did not exhibit any of immunoreactivity
of Bcl-2 in our present study. It is known that Bcl-2 suppresses apoptotic pathways [9].
Therefore, expression of Bcl-2 protein may be weak or unnecessary for regulating an antiapoptotic
role in telencephalic areas of Thai medaka.

In male and female Thai medaka, abundant positive cells of Bcl-2 were detected in
edge midbrain near sulcus limitans. Bcl-2 positive cells were strongly expressed in pituitary
gland of those fish. These findings are consistent with a report of Shin et al. [28] that density of
Bcl-2 immunoreactive cells was high in midbrain portions of mice. In contrast, it was hard to
detected positive immunostaining for Bcl-2 in normal pituitary of mammals [29, 30].

Similarly to midbrain of Thai medaka, Bcl-2 was highly expressed in hindbrain
portion including a part of spinal cords. Shin et al. [28] also reported that Bcl-2 density was
strongly detected in hindbrain and spinal cords of rats. It suggests that Bcl-2 may be necessary
to some antiapoptotic pathways, regulating on survival cells of midbrain, pituitary gland,
hindbrain and spinal cords in medaka fish.

Thus, the dwarf medaka may be provided a convenient model for studying Bcl-2
regulation involved in apoptosis because it has uncomplicated tissues, and most of the same
organs are found in mammal species.

In summary, the present study is the first to demonstrate that the Bcl-2 protein
distributed specifically in both male and female brains of a fresh-water teleost, although a
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comprehensive understanding of regulation mechanism and physiological context remain to be
elucidated.
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