
∫∑§«“¡«‘®—¬

°“√«‘‡§√“–Àå§«“¡¡—Ëπ§ßª≈Õ¥¿—¬∑’Ë‰¥â√—∫°“√ª√—∫ª√ÿß„Àâ¥’¢÷Èπ
¢Õß‚æ√‚µ§Õ≈ ”À√—∫°“√‡´Áπ —≠≠“∑’Ë¡’§«“¡¬ÿµ‘∏√√¡

¢Õß¡‘§“≈’Ë ‚¥¬„™â§—≈‡≈Õ√å‡æ∑√‘‡πÁµ

¬ß¬ÿ∑∏ ‡æ‘Ë¡æŸπ∏π≈“¿*

∫∑§—¥¬àÕ

¡‘§“≈’Ë‰¥âπ”‡ πÕ‚æ√‚µ§Õ≈ ”À√—∫°“√·≈°‡ª≈’Ë¬π¢âÕ¡Ÿ≈Õ’‡≈Á°‚∑√π‘° å·∫∫∑’Ë¡’§«“¡¬ÿµ‘∏√√¡
‚¥¬„™â‡∑§π‘§°“√‡¢â“√À— ¢âÕ¡Ÿ≈ ´÷Ëß¡’™◊ËÕ«à“ Õ’´’‡Õ «—π ´÷Ëß “¡“√∂π”¡“„™â„π°“√‡´Áπ —≠≠“∑’Ë·≈°‡ª≈’Ë¬π
°—π√–À«à“ß Õß∫ÿ§§≈„¥Ê µàÕ¡“‡∫“«å·≈–§≥– §âπæ∫°“√‚®¡µ’·∫∫°“√π”¢âÕ§«“¡¡“ àß„À¡à „π∑—ÈßÕ’´’‡Õ 
«—π·≈–Õ’´’‡Õ «—π∑’Ë∂Ÿ°ª√—∫ª√ÿß‡æ◊ËÕ„Àâ¡’§«“¡™—¥‡®π¡“°¢÷Èπ À≈—ß®“°π—Èπ´“ß·≈–§≥–§âπæ∫°“√‚®¡µ’Õ’°
 Õß·∫∫„πÕ’´’‡Õ «—π∑’Ë∂Ÿ°ª√—∫ª√ÿß‚¥¬‡∫“«å ·µà∑—Èß°“√«‘‡§√“–Àå‚¥¬‡∫“«å·≈–´“ß‡ªìπ°“√«‘‡§√“–Àå‚¥¬„™â¡◊Õ
„πß“π∑’Ë·≈â«¢Õß‡√“‰¥âæ—≤π“«‘∏’°“√∑’Ë‡ªìπ·∫∫Õ—µ‚π¡—µ‘„π°“√«‘‡§√“–Àå§«“¡¡—Ëπ§ßª≈Õ¥¿—¬„π‚æ√‚µ§Õ≈∑’Ë
„™â°“√‡¢â“√À— ¢âÕ¡Ÿ≈ ‚¥¬„™â§—≈‡≈Õ√å‡æ∑√‘‡πÁµ ·≈–‡√“‰¥âª√–¬ÿ°µå„™â«‘∏’°“√¢Õß‡√“„π°“√«‘‡§√“–Àå‡∫◊ÈÕßµâπ
 ”À√—∫∑—Èß Õß‚æ√‚µ§Õ≈ ´÷Ëß‡√“æ∫°“√‚®¡µ’ Õß·∫∫„πÕ’´’‡Õ «—π·≈–°“√‚®¡µ’ “¡·∫∫„πÕ’´’‡Õ «—π∑’Ë∂Ÿ°
ª√—∫ª√ÿß‚¥¬‡∫“«å ·µà°“√«‘‡§√“–Àå„πß“π∑’Ë·≈â«¢Õß‡√“¡’¢âÕ®”°—¥·≈–‰¡à ¡∫Ÿ√≥å „π∫∑§«“¡π’È‡√“‰¥â∑”°“√
¢¬“¬°“√«‘‡§√“–Àå§«“¡¡—Ëπ§ßª≈Õ¥¿—¬„Àâ≈–‡Õ’¬¥‡æ‘Ë¡¡“°¢÷Èπ ÷́Ëß∑”„Àâ‡√“§âπæ∫°“√‚®¡µ’„À¡à Õß·∫∫„π
≈—°…≥–¡—≈µ‘‡´ ™—Ëπ„πÕ’´’‡Õ «—π·≈–°“√‚®¡µ’„À¡à Õß·∫∫„π≈—°…≥–¡—≈µ‘‡´ ™—Ëπ„πÕ’´’‡Õ «—π∑’Ë∂Ÿ°
ª√—∫ª√ÿß‚¥¬‡∫“«å

§” ”§—≠: «‘∏’°“√·∫∫øÕ√å¡Õ≈„π°“√«‘‡§√“–Àå‚æ√‚µ§Õ≈∑’Ë„™â‡∑§π‘§°“√‡¢â“√À— ¢âÕ¡Ÿ≈ «‘∏’°“√‚¡‡¥≈‡™Á§°‘Èß
«‘∏’°“√·∫∫øÕ√å¡Õ≈ §—≈‡≈Õ√å‡æ∑√‘‡πÁµ ‚æ√‚µ§Õ≈∑’Ë„™â‡∑§π‘§°“√‡¢â“√À— ¢âÕ¡Ÿ≈‡æ◊ËÕ§«“¡
ª≈Õ¥¿—¬ °“√√—°…“§«“¡ª≈Õ¥¿—¬„π‡§√◊Õ¢à“¬

ÀâÕßªÆ‘∫—µ‘°“√«‘®—¬µ√√°»“ µ√å·≈–°“√√—°…“§«“¡¡—Ëπ§ßª≈Õ¥¿—¬ ¿“§«‘™“«‘»«°√√¡§Õ¡æ‘«‡µÕ√å §≥–«‘»«°√√¡»“ µ√å
¡À“«‘∑¬“≈—¬‡∑§‚π‚≈¬’æ√–®Õ¡‡°≈â“∏π∫ÿ√’
*ºŸâπ‘æπ∏åª√– “πß“π, e-mail yongyuth.per@kmutt.ac.th



SWU Sci. J. Vol. 26 No. 2 (2010)154

An Improved Security Analysis of Micaliûs
Fair Contract Signing Protocol by Using Coloured

Petri Nets

Yongyuth Permpoontanalarp*

ABSTRACT

Micali proposed a simple and practical cryptographic fair exchange protocol, called
ECS1, for contract signing. Bao et al. found some message replay attacks in both the original
ECS1 and a modified ECS1 where the latter aims to solve an ambiguity in the former. Later,
Zhang et. al. found two multi-session attacks in the modified ECS1. Both Baoûs and Zhangûs
analyses are manual. In our previous work, we developed an automated methodology to analyze
cryptographic protocols by using Coloured Petri Nets (CPN) and performed a preliminary analysis
on both versions of the ECS1. There, we found two multi-session attacks in the original
ECS1 and three multi-session attacks in the modified ECS1 but our previous analysis is
restricted and incomplete. In this paper, we extended our previous analysis on the ECS1
more comprehensively. As a result, we found two new multi-session attacks in the original
ECS1 and two new multi-session attacks in the modified ECS1.

Keywords: Formal methods for cryptographic protocols, model checking, coloured petri nets,
cryptographic protocols, network security, formal methods

Logic and security lab, Department of Computer Engineering, Faculty of Engineering, King Mongkutûs University
of Technology Thonburi
*Corresponding author, email: yongyuth.per@kmutt.ac.th



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 155

Introduction
Cryptographic protocols are protocols which use cryptographic techniques to achieve

certain tasks while preventing malicious parties to attack the protocols. There are many applications
of cryptographic protocols, for example, authenticated key exchange protocols, web security
protocols, e-payment protocols, e-banking protocols, e-voting protocols, etc.

The design and analysis of cryptographic protocols are difficult to achieve because of
the increasingly attacking capabilities and the complex requirement of the applications. Attacks
in many cryptographic protocols have been found later after the protocols have been designed
and even implemented eg. [1-4]. Thus, it requires a method to analyze all possible attacks to the
protocols. Such kind of method would offer a comprehensive understanding of all vulnerabilities
of protocols and certainly would help in developing a better protection for them. Note that in this
paper we focus on only message replay attacks [5]. Also, we focus on an analysis of multiple
executions of a protocol which is also called multi-sessions of protocol execution.

In [6], Micali proposed a cryptographic fair exchange protocol, called ECS1, for
contract signing. A fair exchange protocol ensures that either the two exchanging parties get the
exchanged messages or none of them obtain anything. Fair contract signing protocol is a kind of
fair exchange protocol where two parties aim to exchange their digital signature on an agreed
contract. The optimistic contract signing protocol means that a trusted third party (TTP) is
involved only when there is a dispute between the exchanging parties.

Bao et al. [7] analyzed ECS1 and found several single-session message replay attacks
in ECS1. In general, they showed that the protocol does not achieve the claimed fairness. It can
be argued that many of those attacks are caused by an ambiguity at how TTP should resolve a
dispute. Then, Bao et al. showed that a modified version of ECS1 which aims to solve the
ambiguity in the original ECS1 does not provide the fairness also. In particular, Bao et. al.
found one multi-session attack to the modified ECS1. Later on, Zhang et al. [8] found two
multi-session attacks in the modified ECS1. Those attacks lead to the unfair exchange. It should
be noted that both Baoûs and Zhangûs analyses are manual.

Coloured Petri Net (CPN) [9,10] is a formal method which is based on graph theory.
CPN offers an automated analysis and it has been applied to analyze distributed systems and
communication protocols. In fact, CPN is a model checking technique where a system is first
modeled by a kind of graphs, called a net, and then a state space of all possible executions of the
system is generated and analyzed to search for errors in the system. CPN has many advantages
in that it offers an intuitive and easy way to model a system and it provides many kinds of
interesting analysis on the output state space. Furthermore, it has a software tool which facilitates
the creation, the modification and the analysis of nets.



SWU Sci. J. Vol. 26 No. 2 (2010)156

In our previous work [11,12], we have developed a methodology to analyze
cryptographic protocols by using CPN. Our method can analyze multiple and concurrent sessions
of protocol execution, and can detect multiple attack traces in the protocols. In [13,14], we
applied our methodology to perform a preliminary analysis on ECS1 and found two multi-session
attacks in original ECS1 and three multi-session attacks in the modified ECS1. There, our
analysis is preliminary in that our attacker model for ECS1 is restricted and incomplete.

In this paper, we extend our previous attacker model more comprehensively for ECS1
and perform the analysis. We found two new multi-session attacks in original ECS1 and two new
multi-session attacks in the modified ECS1.

In background section, we discuss Micaliûs original ECS1 and Baoûs modified ECS1.
Also, all previous attack analyses on both versions of ECS1 are discussed. In related-work
section, we compare our CPN method to existing related works. In methodology section, our
CPN methodology and CPN model for ECS1 are presented. In result section, our results on new
attacks found by our CPN method are discussed.

Background
We use the following notations throughout the paper. S → R : M means that user

S sends message M to user R. SIGX(M) represents party Xûs signature on a message M and we
assume that plaintext M is retrievable from SIGX(M). The encryption of a message M with party
Xûs public key is denoted by EX(M).

Alice and Bob stand for well-behaved initiator and responder, respectively. TTP
means a trusted third party who facilitates the exchange between Alice and Bob. I denotes an
attacker who can act as initiator or responder, and I(S) means that the attacker impersonates
user S in the protocol.

A single session means the single execution of a protocol whereas multi-sessions
mean the multiple and concurrent executions of a protocol. While steps 1)-6) describe protocol
steps in the first session, steps 1û)-6û) describe protocol steps in the second session.

Micaliûs ECS1 Protocol [6]
Micali proposed a cryptographic fair exchange protocol for contract signing.

The protocol aims to ensure that two exchanging parties get each other commitment on an
agreed contract or neither of them does. There are three kinds of parties in the protocol : Alice
as an initiator of the protocol, Bob as an responder of the protocol and a third trusted party who
resolves a dispute between Alice and Bob during the exchange.



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 157

We denote Alice, Bob and a trusted party by A, B and TTP, respectively. It is
assumed that both Alice and Bob have already agreed on a plaintext contract C before the
exchange. Alice is committed to contract C as an initiator if Bob has both SIGA(C,Z) and M
where Z = ETTP(A,B,M) and M is a random message. On the other hand, Bob is committed to C
as a responder if Alice has both SIGB(C,Z) and SIGB(Z). However, there is no need for Alice to
verify Z to prove Bobûs commitment.

The following is the detail of the protocol.
A1: 1) A → B: SIGA(C,Z)
B1: 2) B → A: SIGB(C,Z), SIGB(Z)
A2: If Bobûs signatures in step 2 are both valid then

3) A → B: M
B2: If Bob receives valid M such that Z = ETTP(A,B,M)

then the exchange is completed
else Bob requests TTP to resolve a dispute by the following step
4) B → TTP: SIGA(C,Z), SIGB(C,Z), SIGB(Z)

TTP1: If Both Aliceûs and Bobûs signatures in step 4 are valid and
Z = ETTP(A,B,M) then
5) TTP → A: SIGB(C,Z), SIGB(Z)
6) TTP → B: M

To resolve the dispute, TTP sends required information to related parties.

Bao et al.ûs attack on ECS1 [7]
Bao et al. found two single-session message replay attacks in ECS1. It can be argued

that many of these attacks are caused by an ambiguity at how TTP should resolve a dispute.
In particular, at TTP1 if Z = ETTP(A,B,M) for some M, then TTP will resolve the dispute.
Otherwise, the protocol does not specify what TTP should do. Then, Bao proposed a modified
version of ECS1 which aims to solve the ambiguity in the original ECS1. The modified ECS1 is
similar to the original ECS1 except that in step TTP1, there is no check on Z = ETTP(A,B,M).
In other words, in the modified ECS1, TTP resolves the dispute even when Z is not correct, ie. Z ≠
ETTP(A, B, M). Bao showed that the modified version of ECS1 can also be attacked as follows.

In the attack, malicious responder gains an advantage over well-behaved initiator
Alice. In particular, malicious responder I obtains Aliceûs commitment, but Alice does not get
Iûs commitment. There are two attackers. Malicious responder I conspires with another malicious
initiator Ar in a session. In the first session, Alice exchanges with malicious responder I on
contract C, and in the second session conspired initiator Ar exchanges with responder I on
another contract Cû.



SWU Sci. J. Vol. 26 No. 2 (2010)158

1) A → I : SIGA(C,Z) where Z = ETTP(A,I,M)
2) I → A : Nothing
Before the second session starts, I secretly sends Z to Ar.
1û) Ar → I : SIGAr(Cû,Z)
4û) I → TTP : SIGAr(Cû,Z), SIGI(Cû,Z), SIGI(Z)
5û) TTP → Ar : SIGI(Cû,Z), SIGI(Z)
6û) TTP → I : M
Note that in the second session, malicious I skips protocol steps 2 and 3 and

then requests TTP for dispute resolution. Also, in step 2) of the first session, I aborts the protocol
by sending nothing.

Zhang et al.ûs attack on ECS1 [8]
Zhang et al. analyzed both ECS1 and the modified ECS1 and they found one single

session attack in the original ECS1 and two multi-session attacks in the modified ECS1. Since
in this paper we focus on multi-session attacks, only Zhangûs two multi-session attacks are
described here. In both attacks, malicious responder gains an advantage over well-behaved
initiator Alice.

In the first attack, malicious responder I obtains Aliceûs commitment, but Alice does
not get Iûs commitment. In the first session, Alice exchanges with malicious responder I on
contract C. In the second session, I as initiator exchanges with Bob on contract Cû.

1) A → I : SIGA(C,Z) where Z = ETTP(A,I,M)
2) I → A : Nothing

1û) I → B : SIGI(Cû,Z)
2û) B → I : SIGB(Cû,Z), SIGB(Z)
4û) I → TTP : SIGBI, SIGI(Cû,Z), SIGI(Z)
5û) TTP → B : SIGI(Cû,Z), SIGI(Z)
6û) TTP → I : M

Note that in the second session, malicious I skips the protocol step 3 and then
requests TTP for dispute resolution as a responder in the session. Note also that at step 5û) of the
second session, Bob does not obtain Iûs commitment since Z is for the session between Alice and
I. In other words, Z is not valid for Bob. Note also that the first Zhangûs attack achieves the same
damage as Baoûs attack but Zhangûs attack requires only one attacker.

In the second attack, malicious responder I obtains Aliceûs commitment, but Alice
does not get Iûs commitment. In the first session, Alice exchanges with malicious responder I.
In the second session, Alice exchanges with Bob. In both sessions, the same contract is signed.



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 159

1) A → I : SIGA(C,Z) where Z = ETTP(A,I,M)
2) I → A : Nothing

1û) A → I(B) : SIGA(C,Zû) where Zû = ETTP(A,B,Mû)
I(A) → B : SIGA(C,Z)

2û) B → I(A) : SIGB(C,Z), SIGB(Z)
4û) I → TTP : SIGB(C,Z), SIGI(C,Z), SIGI(Z)
5û) TTP → B : SIGI(C,Z), SIGI(Z)
6û) TTP → I : M

Note that in step 1û) of the second session, the message that is sent by Alice to Bob
is intercepted and modified by I. In particular, I eavesdrops message sent by Alice to Bob by
impersonating Bob. Then, I sends a modified message to Bob by impersonating Alice. It can be
seen that the difference between Zhangûs first attack and Zhangûs second attack is on the contract
in two sessions. While the second attack requires that the same contact is signed in two sessions,
the first attack relaxes this requirement.

Our previous attacks on ECS1 [14]
In our previous work [11,12], we have developed a methodology to analyze

cryptographic protocols by using CPN. In [13,14], we applied our methodology to perform a
preliminary analysis on ECS1 and found two multi-session attacks in original ECS1 and three
multi-session attacks in the modified ECS1. In the first attack on the original ECS1, malicious
responder gains an advantage over well-behaved initiator Alice. In the second attack on the
original ECS1, well-behaved initiator Alice gains an advantage over well-behaved responder
Bob. For the modified ECS1, the first attack allows malicious responder to gain an advantage
over well-behaved initiator Alice. In the second attack on modified ECS1, both well-behaved
initiator Alice and malicious initiator I gain advantages over well-behaved responder Bob. In the
third attack on modified ECS1, malicious responder I gains an advantage over Alice.

We discuss our previous attacks in the original ECS1 first. In the first attack,
malicious responder I gets Aliceûs commitment, but Alice does not obtain Iûs commitment.
In both sessions, Alice exchanges with malicious responder I by using the same random message
M. But the contracts are different in the two sessions.

1) A → I : SIGA(C,Z) where Z = ETTP(A,I,M)
1û) A → I : SIGA(Cû,Z)
2û) I → A : Nothing

2) I → A : SIGI(C,Z), SIGI(Z)
3) A → I : M



SWU Sci. J. Vol. 26 No. 2 (2010)160

Since M is used in both sessions, at step 3) of the first session I also get Aliceûs
commitment for the first session too.

In the second attack, Alice obtains Bobûs commitment but Bob does not get Aliceûs
commitment. In the first session, Alice exchanges with malicious responder I. In the second
session, Alice exchanges with Bob. The same contract is signed in both sessions.

1) A → I : SIGA(C,Z) where Z = ETTP(A,I,M)
2) I → A : Nothing

1û) A → I(B) : SIGA(C,Zû) where Zû = ETTP(A,B,Mû)
I(A) → B : SIGA(C,Z)

2û) B → A : SIGB(C,Z), SIGB(Z)
3û) A → B : Mû
4û) B → TTP : SIGA(C,Z), SIGB(C,Z), SIGB(Z)
5û) TTP → A : Error
6û) TTP → B : Error

At steps 5û) and 6û) of the second session, TTP does not send any information to
Alice and Bob to resolve the dispute since Z is not valid. Also, the dispute resolution process is
in an error state.

In the following, we discuss our three multi-session attacks on the modified ECS1.
In the first attack, malicious responder I obtains Aliceûs commitment, but Alice does not get
Iûs commitment. There are two attackers. Attacker I conspires with another malicious initiator
Ar in a session. In the first session, Alice exchanges with malicious responder I, and in the
second session conspired initiator Ar exchanges with malicious responder I.

1) A → I : SIGA(C,Z) where Z = ETTP(A,I,M)
2) I → A : Nothing

Before the second session starts, I secretly sends SIGA(C,Z) to Ar.
4û) Ar → TTP : SIGA(C,Z), SIGAr(C,Z), SIGAr(Z)
5û) TTP → A : SIGAr(C,Z), SIGAr(Z)
6û) TTP → Ar : M
Then, Ar sends secretly M to I.

Note that Alice obtains Arûs commitment instead at step 5û) of the second session.
This is not useful since Alice expects to get Iûs commitment. Note also that this attack looks
similar to Baoûs attack but the difference is on the party who requests for the dispute resolution
to TTP. In Baoûs attack, malicious attacker I sends a dispute resolution request, but in our attack
the conspired party Ar sends the request.



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 161

In the second attack, both Alice and malicious initiator I obtain Bobûs commitment,
but Bob get neither Aliceûs and Iûs commitments. In the first session, Alice exchanges with Bob
and in the second session, malicious initiator I exchanges with Bob. In both sessions, the same
contract is signed.

1) A → I(B) : SIGA(C,Z) where Z = ETTP(A,B,M)
1û) I → B : SIGI(C,Z)
2û) B → I : SIGB(C,Z), SIGB(Z)
3û) I → B : Nothing
4û) B → TTP : SIGI(C,Z), SIGB(C,Z), SIGB(Z)
5û) TTP → I : SIGB(C,Z), SIGB(Z)
6û) TTP → B : M

2) I(B) → A : SIGB(C,Z), SIGB(Z)
3) A → I(B) : M
Note that in the first session, I impersonates B and all exchanged messages have

never arrived to B.
In the third attack, malicious responder I obtains Aliceûs commitment, but Alice

gets Iûs commitment on an unintended contract. In the first session, Alice exchanges with
malicious responder I on contract C. In the second session, Alice exchanges with Bob on contract
Cû. In both sessions, the same random message M is used, but different contracts are signed.

1) A → I : SIGA(C,Z) where Z = ETTP(A,I,M)
1û) A → I(B) : SIGA(Cû,Zû) where Zû = ETTP(A,B,M)
2û) I(B) → B : Nothing
4) I → TTP : SIGA(Cû,Zû), SIGI(Cû,Zû), SIGI(Zû)
5) TTP → A : SIGI(Cû,Zû), SIGI(Zû)
6) TTP → I : M

Note that at step 2û), the second session is aborted. Exchanged messages have
never arrived to Bob. At the end of the first session, Alice obtains Iûs commitment on contract
Cû, instead of C.

Coloured Petri Nets (CPN) [9, 10]
CPN is a formal method based on graph theory to analyze distributed systems and

communication protocols. In fact, CPN is a model checking technique where a system is first
modeled by a kind of graphs, called a net and then a state space of all possible executions of
the system is generated and analyzed to search for errors in the system. However, only a single
error trace can be detected by the built-in mechanism in CPN.



SWU Sci. J. Vol. 26 No. 2 (2010)162

CPN extends Petri nets [15] with programming abilities. The programming language
provided in CPN is a functional programming language called CPN-ML, and it is based on
standard ML. A graph model in CPN contains four main components: places, transitions, arcs
and tokens. Places, represented by circles, and transitions, represented by rectangles, are used to
describe states and actions of the system, respectively. Arcs represented by arrows are used to
link between place and transition. Tokens mean data and they are just a rich set of data types in
standard ML. Arc expressions which are CPN-ML programs attached to arcs describe how a
transition produces output tokens from input tokens. A transition can occur, called enabled,
only when there are sufficient tokens that match the arc expressions on its input places. When an
enabled transition is executed, called occurred, tokens from input places are removed and new
tokens are added into output places according to corresponding arc expressions. Thus, the main
programming functionality in CPN is to perform token processing at transitions. Furthermore,
CPN provides a software tool called CPNTools [10] which facilitates the creation, the
modification and the analysis of nets.

The original Petri nets [15], called place/transition nets, are considered as low-level
nets. It is widely known that low-level nets are not practical to deal with real-world applications
due to their unmanageable size of the net specification. Thus, many high-level nets, for example
CPN and Predicate/transition nets [27], have been developed to solve this problem. In fact, CPN
is very much similar to Predicate/transition nets [27] and they are considered as two different
dialects. There are other kinds of high-level nets, for example algebraic Petri nets [28], CPN with
algebraic specifications [29], etc. Most of them are similar to CPN, but the difference is on the
inscription language which is the language for arc expressions and tokens. While the inscription
language in CPN is based on functional programming, the inscription language in algebraic
Petri nets and CPN with algebraic specifications is based on algebraic specifications.
Further discussion on the difference between CPN and other high-level nets can be found in [9].

Related works
Petri Nets for Cryptographic Protocols

A lot of works on Petri nets (PN) [16-23] have been applied to analyze cryptographic
protocols. They can be classified into two kinds. The first kind [16-22] offers a modeling and
analysis method to find attacks. The second kind [23] provides a theoretical semantics for
cryptographic protocols which can be used to prove properties of protocols, rather than to find
attacks. We focus on the former kind due to its practical use. All the works in the first kind
except for [22] offer an analysis of a single session of protocol execution only, but all of them
can analyze a single attack trace only.



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 163

The works in [16, 17] are the first which applies Petri nets to analyze cryptographic
protocols. In particular, they employ CPN to detect attacks in the protocols. However,
they analyze strictly a single session of protocol execution and can detect a single attack trace
only. Later on, the works in [18,19] developed place/transition nets which are low-level nets to
analyze security protocols. However, those low-level nets are less expressive than CPN which is
considered as high-level nets. In particular, tokens in those low-level nets are uncoloured or just
dots which represent an availability status of some resource or data only whereas tokens in CPN
are rich data types in standard ML. Furthermore, CPN offers the programming ability to perform
token processing at transitions, but this ability is missing in those low-level nets.

Recently, there are two works [20, 21] which apply CPN to analyze cryptographic
protocols. Both works do not truly provide an analysis of multiple concurrent sessions of
protocol execution. Even though [20] offers an analysis of two sequential sessions of protocol
execution, it has to analyze one session at a time. So, it is considered as a single session analysis.
Thus, the attacker model in both works has limited capabilities. The work [22] offers an analysis
of multiple and concurrent session of protocol execution. However, like all other Petri-net
approaches [16-21], the work can detect a single attack trace only. But our CPN method not only
can analyze multiple and concurrent sessions of protocol execution but also can detect multiple
attack traces in the protocol.

Other formal methods for analyzing Contract Signing protocols
In [24], Chadha, Kanovich, and Scedrov proposed an inductive proof method to

analyze a variant of contract-signing protocol proposed by Garay, Jakobsson and MacKenzie.
Their method aims to prove fairness and abuse-free properties of the protocol, rather than to find
attacks. In addition, their method is manual. In [25], Shamatikov and Mitchell applied a model
checking system called Murϕ to analyze two contract signing protocols. A protocol is modeled
as an automata by using a programming language. Their method is automatic and some new
attacks on the protocols are discovered. In [26], Gurgens and Rudolph analyzed a number of fair
exchange non-repudiation protocols using asynchronous product automata (APA) and the simple
homomorphism verification tool (SHVT). Similar to Murϕ, a protocol is modeled as an automata
but by using a text-based description on states and state transitions. Their method is automatic
and it found new attacks. Both Murϕ and SHVT offer an analysis of multiple sessions, but they
can detect only a single attack trace.



SWU Sci. J. Vol. 26 No. 2 (2010)164

Our Model
Our Methodology [11, 12]

In general, our model checking methodology for the analysis of cryptographic
protocols consists of five steps which are (1) protocol and attacker representation, (2) state
space and trace generation, (3) characterization and search for attack states, (4) attack trace
extraction and (5) attack trace classification. The detail of our methodology is shown as follows.

First, we build a CPN graph model to represent message exchange by all user parties
and to represent attacker behavior. Each user party is modeled according to the protocol.
Moreover, an attacker in our model can eavesdrop, modify and drop messages during the
transmission. Also, the attacker can send new messages. Both user and attacker representations
are present in the same model.

Second, an automata or a state space of the protocol with attackers is generated by
using the state space tool in CPNTools [10]. In general, the state space represents all possible
behaviors of every party, including attacker, in the protocol. To reduce the size of a computed
state space in our method, we employ a decomposition technique. In particular, we define a
configuration to compute a decomposed state space. In this paper, we consider the analysis of
multi-sessions of protocol execution. A configuration consists of the information for the protocol
execution in a multi-session setting, for example, the identities of initiator and responder, the role
of attackers, secrets and nounces in each concurrent session, and a schedule of the execution of
the multiple concurrent sessions. The schedule specifies that the decomposed state space is
computed for one alternating execution of multiple concurrent sessions of protocol runs only,
instead of all possible alternating executions. Exploring all possible alternating executions within
a state space is expensive and causes a huge state space. However, we can explore each attack
scenario, eg. a specific alternating execution or a specific initiator and responder, one by one by
computing a decomposed state space with a specific configuration.

Third, we create a query function in CPNML language, which is based on ML
functional programming language, to search for attack states in the state space. Attack states are
characterized by vulnerability events. Vulnerability events are events which may lead to a
compromise of protocols, and such events are protocol dependent. In ECS1, there is one
vulnerability event where one party, who is either initiator or responder, gets another party
commitment, but the latter does not get the former commitment. In other words, this event
describes exactly an unfair state. The concept of vulnerability events provides a general method
to characterize attack states intuitively and comprehensively. Also, queries can be built easily to
detect such combined vulnerability events.



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 165

Fourth, after attack states are discovered from the state space, we extract attack traces.
Conceptually, an attack trace describes how an attacker carries out an attack successfully step by
step. Given an attack state in a state space, a path from the initial state to the attack state is an
attack trace. Our method offers an efficient new approach to extract attack traces from an output
state space without the need for any further computation. In our CPN model, as the protocol
execution proceeds, an attack trace which is a record of all exchanged messages between
parties so far is stored into an output state. More specifically, the attack trace is stored in a global
fusion place when a message is sent from one user to another. Thus, when an attack state is
found, the attack trace can be extracted from the state immediately. As a result, the analysis of
multiple attack traces of an attack can be performed efficiently by simple searching for attack
states in the state space and extracting an attack trace from the attack state.

Fifth, after attack traces are obtained, we classify them into each group. In general,
there can be a huge amount of attack states and traces found in a state space. For example,
in ECS1 we found 22,890 attack traces in a configuration as shown in table 1. Thus, to ease the
analysis of a large amount of attack traces, we develop an attack classification by using attack
patterns. In general, an attack pattern describes the core of an attack, and it contains a list of
minimal protocol messages that are the cause of each attack. Attack traces that produce the
same attack pattern are classified into the same group of attacks. In general, it requires human
intervention to create each attack pattern from an attack trace.

Our Extended Attacker Model
The following shows the description of our attacker model.

Definition 1: The attacker abilities
The attacker in our model is capable of the following:
1. The attacker can eavesdrop, modify and drop messages during the transmission

between users.
2. The attacker can send a message to a user.
3. The attacker can either initiate a new session with users or take part in an existing

session with users.
4. The attacker can impersonate any user.
5. The attacker can perform any cryptographic computation by using known keys,

known messages and known ciphertexts with a limited but reasonable power, eg. encryption and
decryption.



SWU Sci. J. Vol. 26 No. 2 (2010)166

6. The attacker has its own storage with a finite and reasonable amount.
7. The attacker does not attack himself.
In our previous analysis [14], our attacker model is restricted and incomplete in many

aspects. Firstly, the attacking ability to modify messages during the transmission does not apply
to a message at protocol step 4 in both versions of ECS1. In other words, our previous attacker
does not modify any dispute resolution request to TTP at all. Secondly, only an attacker who acts
as a malicious responder in an exchange can send a dispute resolution request to TTP. So, an
attacker who acts as a malicious initiator is not allowed to request for a dispute resolution to
TTP. Thirdly, our attacker possesses only one random message M, instead of two random
messages. This is restricted since it does not allow an analysis of attack scenarios where an
attacker involve in two concurrent sessions as initiator, and the attacker uses two different
random messages in the two sessions.

In our current analysis, we extend our previous attacker model to overcome all
these restrictions. As a result, we obtain a more comprehensive attack analysis and find new
attacks in both versions of ECS1.

Our CPN Model
Our CPN model consists of three levels: top, entity, and process levels. Due to space

limit, we will present very few parts of our model only. The top level shows the interaction and
communication between all parties. Figure 1 shows the top level net. It can be seen that all
exchanged messages amongst A, B and TTP have to pass through attacker I, and I can conspire
with Ar.

The entity level shows all actions that each party involves in the protocol. Each
action or process corresponds to a protocol step. Aliceûs entity level consists of three processes:
TA1, TA2, and TA3, and Bobûs entity level also has three processes: TB1, TB2, and TB3. But
Intruderûs entity level contains six processes and so is Ar. There is no TTPûs entity level for
simplicity since TTP performs only one step. Aliceûs entity level is shown in figure 2.



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 167

Figure 1 Top level

Figure 2 Aliceûs entity level

Figure 3 TA1ûs process level



SWU Sci. J. Vol. 26 No. 2 (2010)168

The process level shows the detail of each process in the entity level. Figure 3
shows the detail of Aûs TA1 process which is to generate the message at step 1. The transition
TA1_1 is to generate Aûs signature on contract and Z by using her private key from her own
DB-place and to send it to responder. The SC1 place is to check session scheduling for A. If Aûs
model is scheduled to execute, then an appropriate token will appear at SC1 and then the
transition TA1_1 will occur. Also, an attack trace is stored into a state by recording the trace in
the global fusion place TR1.

In addition, there is a session scheduling process which is to schedule each session to
execute and to control the number of protocol steps to be executed in a scheduled session
according to a given configuration. To simplify explanation, we omit the detail of the scheduling
process here.

Result and Discussion
New Attacks in the original ECS1

We found two new attacks in the original ECS1 protocol. In the first attack, a
malicious initiator and Alice gains an advantage over Bob. In the second attack, Alice gains an
advantage over Bob on an unintended contract.

In the first attack, both Alice and malicious initiator I obtain Bobûs commitment,
but Bob get neither Aliceûs nor Iûs commitments. In the first session, Alice exchanges with Bob.
In the second session, malicious initiator I exchanges with Bob. In both sessions, the same
contract is signed.

1) A → I(B) : SIGA(C,Z) where Z = ETTP(A,B,M)
I(A) → B : Nothing
1û) I → B : SIGI(C,Z)
2û) B → I : SIGB(C,Z), SIGB(Z)
3û) I → B : Mû where Mû ≠ M
4û) B → I(TTP) : SIGI(C,Z), SIGB(C,Z), SIGB(Z)

I(B) → TTP : SIGA(C,Z), SIGB(C,Z), SIGB(Z)
5û) TTP → A : SIGB(C,Z), SIGB(Z)
6û) TTP → B : M

In step 1) of the first session, the message is intercepted by attacker I and is dropped.
In other words, it has never arrived to Bob. In step 4û) of the second session, the dispute
resolution request is intercepted by attacker I, and I sends a modified request to TTP. It can be
seen that at the end of the dispute resolution, TTP is fooled to forward Bobûs commitment to
Alice.



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 169

In fact, our new first attack achieves the same damage as the second attack in our
previous analysis, but the attack methods are different. In our previous analysis, it was attacker
I who sends Bobûs commitment to Alice. But in our new attack, it is TTP who sends Bobûs
commitment. We consider our new attack as a more reasonable one since TTP is fooled to take
part in the attack. But in the previous analysis, attacker has to explicitly send Bobûs commitment
to Alice.

In the second attack, Alice obtains Bobûs commitment on an unintended contract,
but Bob does not get Aliceûs commitment. In the first session, Alice exchanges with Bob on
contract C. In the second session, malicious initiator I exchanges with Bob on another contract
Cû. At the end of the first session, Alice obtains Bobûs commitment on contract Cû instead of C.

1) A → B : SIGA(C,Z) where Z = ETTP(A,B,M)
1û) I → B : SIGI(Cû,Zû) where Z = ETTP(I,B,Mû)
2û) B → I : SIGB(Cû,Zû), SIGB(Zû)
3û) I → B : Mû

2) B → I(A) : SIGB(C,Z), SIGB(Z)
I(B) → A : SIGB(Cû,Zû), SIGB(Zû)

3) A → B : Nothing
4) B → I(TTP) : SIGA(C,Z), SIGB(C,Z), SIGB(Z)

I(B) → TTP : SIGI(Cû,Zû), SIGB(Cû,Zû), SIGB(Zû)
5) TTP → I : SIGB(Cû,Zû), SIGB(Zû)
6) TTP → B : Mû
At step 2) of the first session, the message is replayed from the second session.

So, Alice obtains Bobûs commitment on contract Cû. At step 4) of the first session, the dispute
resolution request is intercepted by attacker I, and the attacker sends a modified request by using
messages from the second session. Indeed, the dispute resolution request at step 4) of the first
session can be dropped by the attacker, and the result of the attack is still the same.

New Attacks in Baoûs modified ECS1
We found two new attacks in Baoûs modified ECS1 protocol. In the first attack, Bob

gains an advantage over Alice, and malicious initiator gains an advantage over Bob. In the
second attack, Alice gains an advantage over Bob on an unintended contract.

In the first attack, Bob obtains Aliceûs commitment, but Alice gets Bobûs commitment
on an unintended contract. Moreover, malicious initiator I obtains Bobûs commitment, but Bob
does not have Iûs commitment. In the first session, Alice exchanges with Bob on a contract.
In the second session, I exchanges with Bob on a different contract.



SWU Sci. J. Vol. 26 No. 2 (2010)170

1) A → B : SIGA(C,Z) where Z = ETTP(A,B,M)
1û) I → B : SIGI(Cû,Z)
2û) B → I : SIGB(Cû,Z), SIGB(Z)
3û) I → B : Mû
4û) B → I(TTP) : SIGI(Cû,Z), SIGB(Cû,Z), SIGB(Z)
5û) I(TTP) → TTP : Nothing

2) B → I(A) : SIGB(C,Z), SIGB(Z)
I(B) → A : SIGI(Cû,Z), SIGB(Z)

3) A → B : Nothing
4) B → I(TTP) : SIGA(C,Z), SIGB(C,Z), SIGB(Z)

I(B) → TTP : SIGI(Cû,Z), SIGB(Cû,Z), SIGB(Z)
5) TTP → I : SIGB(Cû,Z), SIGB(Z)
6) TTP → B : M
Note that at step 4) of the second session, malicious attacker intercepts the dispute

resolution request from B and drops it off. So the request does not arrive to TTP. At step 2) of
the first session, Bobûs commitment on contract C is eavesdropped by attacker and Bobûs
commitment on another contract Cû is replayed instead. At step 4) of the first session, the dispute
resolution request where A is the initiator is intercepted and another request where I is the
initiator is sent instead. As a result, Alice does not get Bobûs commitment on contract C, But Bob
obtains Aliceûs commitment.

Indeed, we can obtain another variant attack where Alice does not obtain Bobûs
commitment on an unintended contract, but Bob gets Aliceûs commitment and malicious initiator
I obtains Bobûs commitment. The variant attack is similar to this attack, except for step 2) of the
first session where nothing is sent to Alice. In other words, Bobûs commitment is simply
dropped off by attacker.

It can be seen that in Baoûs attack, Zhangûs two attacks and the first and third attacks
in our previous analysis, malicious responder gains an advantage over Alice also. In all of those
attacks, the attacker tries to create a modified dispute resolution request to TTP where the
responder in the request is the attacker. As a result of the resolution, the attacker would obtain
the random message M and then Aliceûs commitment. However, our new attack uses a different
approach in that the attacker tries to create a modified resolution request to TTP where the
responder is Bob but the initiator is not Alice. So, Bob will obtain Aliceûs commitment, but Alice
does not. In other words, Bob gains an advantage over Alice. In summary, our new attack allows
the well-behaved responder, instead of attacker, to gain an advantage over Alice.



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 171

The second new attack is identical to our second new attack in the original ECS1
that is discussed previously. In other words, our second new attack works for both original ECS1
and the modified ECS1.

Performance
The table 1 shows some examples of configurations and their computation results.

Each row of the table shows a simplified form of a configuration of a session. For example,
(A,I,c1,ma1) means that in the session A and I are initiator and responder, respectively, and c1
is a contract and ma1 is the random message M. çAttack tracesé means the number of attack
traces found in the state space. çSté means the amount of times used to generate a state space,
and çTré means the amount of times used to compute all attack traces. For the largest state space,
the number of nodes is 564,098, and the computation times for state space and all attack traces
are about 8 hours and 50 minutes, and about 4 minutes, respectively. For the smallest state space,
the number of nodes is 1,225, and the computation times for state space and all attack traces are
just 11 seconds and less than 1 second, respectively.

Table 1 Some results of the state space computation

Configurations of Attack Size of State Space Times (in seconds)
two sessions Traces Nodes Arcs St Tr Total

1. (I,B,c1,mi1)(I,Ar,c2,mi2) 22,890 564,098 570,997 31,785 226 32,011

2. (I,B,c1,mi1)(I,Ar,c2,mi1) 23,652 522,680 530,246 28,879 240 29,119

3. (I,Ar,c2,mi1)(I,B,c1,mi2) 20,232 471,884 472,895 23,490 178 23,668

4. (I,Ar,c2,mi1)(I,B,c1,mi1) 18,726 436,151 437,141 20,634 154 20,788

5. (I,B,c1,mi1)(Ar,I,c2,mi1) 14,252 254,652 257,745 7,711 84 7,795

6. (I,B,c1,mi1)(Ar,I,c2,mi2) 12,884 233,210 235,509 6,478 71 6,549

7. (I,B,c1,mi1)(I,B,c2,mi2) 7,987 176,536 184,171 3,828 50 3,878

8. (A,I,c1,ma1)(I,Ar,c2,mi1) 1,254 129,372 129,371 3,264 7 3,271

9. (A,B,c1,ma1)(I,B,c1,mi1) 5,406 67,042 67,409 1,517 13 1,530

10. (A,B,c1,ma1)(I,B,c2,mi1) 3,935 48,303 48,590 989 7 1,006

11. (A,I,c1,ma1)(A,B,c1,ma1) 392 7,009 7,053 105 0 105

12. (A,B,c1,ma1)(A,I,c1,ma1) 108 3,375 3,386 46 0 46

13. (A,I,c1,ma1)(A,I,c2,ma1) 28 1,225 1,224 11 0 11



SWU Sci. J. Vol. 26 No. 2 (2010)172

Conclusion
In this paper, we have extended our previous analysis on ECS1 by using our

CPN-based methodology to analyze cryptographic protocols. In particular, we have extended our
attacker model for both versions of ECS1 to allow a more comprehensive analysis than our
previous attacker model. As a result, we found two new attacks in the original ECS1 and two
attacks in the modified ECS1. This demonstrates clearly the usefulness of formal methods to
analyze cryptographic protocols. Our CPN method allows an efficient way to analyze multiple
attack traces in multiple sessions of protocol execution. As a future work, we aim to apply our
method to analyze other kinds of cryptographic protocols.

Acknowledgement
The author would like to acknowledge a financial support from National Research

Council of Thailand.

References
1. Clark, J., and Jacob, J. 1997. A Survey on Authentication Protocols. Available from URL:

http://www.cs.york.ac.uk/~jac/papers/drareview.ps.gz. 15 October 2008.
2. Meadows, C. 2003. Formal Methods for Cryptographic Protocol Analysis: Emerging Issues

and Trends. IEEE Journal on Selected Areas in Communications 21(1): 44-54.
3. Meyer, U., and Wetzel, S. 2004. A Man-In-The-Middle Attack on UMTS. In: Jakobsson,

M. and Perrig, A. Editors. Proceedings of the 3rd ACM workshop on Wireless security,
1 October 2004. Philadelphia, U.S.A. ACM Press. p. 90-97

4. Cervesato, I., Jaggard, A. D., Scedrov, A., Tsay, J., and Walstad, C. 2008. Breaking and
Fixing Public-Key Kerberos. Information and Computation 206(2-4): 402-424

5. Syverson, P. F. 1994. A Taxonomy of Replay Attacks. In: Proceedings of the 7th IEEE
Computer Security Foundations Workshop, 14-16 June 1994. New Hampshire, U.S.A.
IEEE Press. p. 187-191

6. Micali, S., 2003. Simple and Fast Optimistic Protocols for Fair Electronics Exchange. In:
Proceedings of the 22nd Symposium on Principles of Distributed Computing. 13-16 July
2003. Boston, U.S.A. ACM press. p. 12-19

7. Bao, F., Wang, G., Zhou, J., and Zhu, Z. 2004. Analysis and Improvement of Micaliûs Fair
Contract Signing Protocol. In: Wang, H., Pieprzyk, J., and Varadharajan, V., Editors.
Proceedings of the 9th Australasian Conference on Information Security and Privacy, 13-15
July 2004, Sydney, Australia. LNCS Vol. 3108 Springer Verlag. p. 176-187



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 173

8. Zhang, Y., Wang, Z., and Yang, B. 2005. The Running-Mode Analysis of Two-Party
Optimistic Fair Exchange Protocols. In: Hao Y, et. al., Editors. Proceedings of the
International Conference on Computational Intelligence and Security. 15-19 December 2005.
China. LNCS Vol. 3802. Springer Verlag. p. 137-142

9. Jensen, K. 1997. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use,
Vol.1. Monographs in Theoretical Computer Science. Berlin/Heidelberg. Springer-Verlag.

10. Jensen, K., Kristensen, L.M., and Wells, L. 2007. Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software Tools
for Technology Transfer 9(3): 213-254.

11. Permpoontanalarp, Y., and Sornkhom, P. 2009. A New Coloured Petri Net Methodology
for the Security Analysis of Cryptographic Protocols. In: Jensen, K., Editors. Proceedings
of the 10th Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools. 19-21 October 2009. Aarhus. Denmark. p. 81-100.

12. Permpoontanalarp, Y. 2010. On-the-fly Trace Generation and Textual Trace Analysis and
Their Applications to the Analysis of Cryptographic Protocols. In: Hatcliff, J., and Zucca,
E., Editors. Proceedings of the 30th International Conference on Formal Techniques for
Networked and Distributed Systems. 7-9 June 2010. Amsterdam, Netherlands. LNCS vol
6117 Springer-Verlag. p. 201-215.

13. Sornkhom, P., and Permpoontanalarp, Y. 2008. Security Analysis of Micaliûs Fair Contract
Signing Protocol by Using Coloured Petri Nets. In: Proceedings of the 9th ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/
Distributed Computing ACIS-SNPD. 6-8 August 2008, Phuket, Thailand. IEEE Press
p. 329-334.

14. Sornkhom, P., and Permpoontanalarp, Y. 2009. Security Analysis of Micaliûs Fair Contract
Signing Protocol by Using Coloured Petri Nets: Multi-Session Case. In: Proceedings of
23rd IEEE International Symposium on Parallel and Distributed Processing (the 5th

International Workshop on Security in Systems and Networks). 23-29 May 2009. Rome,
Italy. IEEE Press p. 1-8.

15. Murata, T. 1989. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4): 541-580.

16. Nieh, B., and Tavares, S. 1992. Modelling and Analyzing Cryptographic Protocols Using
Petri Nets, In: Seberry, J., and Zheng, Y., Editors. Advances in Cryptology-AUSCRYPT-92,
Workshop on the Theory and Application of Cryptographic Techniques. 13-16 December
1992. Queensland, Australia. LNCS Volume 718. Springer Verlag, p. 275-295.



SWU Sci. J. Vol. 26 No. 2 (2010)174

17. Basyouni, A., and Tavares, S. 1997. New Approach to Cryptographic Protocol Analysis
using Coloured Petri Nets, In: Proceedings of the Canadian Conference on Electrical and
Computer Engineering. 25-28 May 1997. Canada. IEEE Press. p. 334-337.

18. Lee, G., and Lee, J. 1997. Petri Net Based Models for Specification and Analysis of
Cryptographic Protocols. The Journal of Systems and Software 37: 141-159.

19. Lim, S., Ko, J., Jun, E., and Lee, G. 2001. Specification and Analysis of N-Way Key
Recovery System by Extended Cryptographic Timed Petri Net. The Journal of Systems and
Software 58: 93-106.

20. Dresp, W. 2005. Security Analysis of the Secure Authentication Protocol by Means of
Coloured Petri Nets. In: Dittmann, J., Katzenbeisser, S. and Uhl, A., Editors. Proceeding of
the 9th IFIP Communications and Multimedia Security, 19-21 September 2005. Salzburg,
Austria. LNCS, Springer Verlag. p. 230-239.

21. Al-Azzoni, I., Down, D. G., and Khedri, R. 2005. Modeling and Verification of
Cryptographic Protocols Using Coloured Petri Nets and Design/CPN. Nordic Journal of
Computing 12(3): 201-228.

22. Bouroulet, R., Devillers, R., Klaudel, H., Pelz, E., and Pommereau, F. 2008. Modeling
and Analysis of Security Protocols Using Role Based Specifications and Petri Nets: In: Hee,
K. M., and Valk, R., Editors. Proceeding of the 29th International Conference on
Applications and Theory of Petri Nets. 23-27 June 2008, Xian, China. LNCS Vol. 5062
Springer Verlag, p. 72-91

23. Crazzolara, F., and Winskel, G. 2001. Events in Security Protocols, In: Proceedings of the
8th ACM Conference on Computer and Communication Security. 6-8 November 2001.
Pennsylvania, U.S.A. ACM Press. p. 96-105.

24. Chadha, R., Konovich, M., and Scedrov, A. 2001. Inductive Methods and Contract-Signing
Protocols. In: Proceedings of 8th ACM Conference on Computer and Communications
Security. 6-8 November 2001. Pennsylvania, USA. ACM Press. p. 176-185.

25. Shmatikov, V., and Mitchell J.C. 2002. Finite-State Analysis of Two Contract Signing
Protocols. Theoretical Computer Science 283: 419-450

26. Gürgens, S., and Rudolph, C. 2005. Security Analysis of Efficient (Un-) Fair Non-
Repudiation Protocols. Formal Aspect of Computing 17(3): 260-276

27. Genrich, H. J., and Lautenbach, K. 1981. System Modelling with High-Level Petri Nets.
Theoretical Computer Science 13(1): 109-135

28. Dimitrovici, C., Hummert, U., and Petrucci, L. 1991. Semantics, Composition and Net
Properties of Algebraic High-level Nets. In: Rozenberg, G., Editors. Advances in Petri Nets.
LNCS Vol. 524. Berlin/Heidelberg. Springer-Verlag. p. 93-117.



«“√ “√«‘∑¬“»“ µ√å ¡»« ªï∑’Ë 26 ©∫—∫∑’Ë 2 (2553) 175

29. Vautherin, J. 1987. Parallel Systems Specifications with Colored Petri Nets and Algebraic
Specifications. In: Rozenberg, G., Editors. Advances in Petri Nets. LNCS Vol. 266. Berlin/
Heidelberg. Springer-Verlag. p. 293-308.

‰¥â√—∫∫∑§«“¡«—π∑’Ë 5 °√°Æ“§¡ 2553
¬Õ¡√—∫µ’æ‘¡æå«—π∑’Ë 18  ‘ßÀ“§¡ 2553




