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Magnetic Phases in Modified Random Bond Ising Model
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ABSTRACT

The magnetic phase diagram of a modified random-bond Ising model has been
investigated. The model is based on the random-bond Ising model in which the magnetic
interactions are distributed in Gaussian form. The width of the Gaussian distribution (J) of the
interaction has been varied. The variance of the distribution width corresponds to the degree of
disorder in the system. By using magnetization, spin glass magnetization and binder cumulant,
three ordered phases appear in the J-T phase diagram where T is temperature: (1) ferromagnetic
(FM) phase; (2) spin glass (SG) phase; (3) paramagnetic (PM) phase.
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Introduction
For the magnetic film on homogeneous single substrate, the previous experimental

results show that the important parameters such as magnetization, heat capacity, magnetic
susceptibility, etc., are similar to the values that calculated from the Ising model. But in the
homogenous binary mixture, it will become thermodynamically unstable which cause by the
disorder in the system [1, 2]. One of the suitable models to describe this system is random-bond
Ising model (RBIM). In the RBIM, the interactions are in the form of probability distribution [3],
e.g., Gaussian [4], uniform [3], bimodal [5], etc. The values from the experimental result are in
agreement with that of numerical simulations for the system of quenched disorder caused by
random-bond defects which happen in the homogenous binary mixture [6-11].

Another model is Edward-Anderson (EA) spin glass model [12] which base on binary
mixture that an array of spins of one material arranged at random in the matrix of another
material. The interactions between spins are Gaussian distribution with zero mean therefore
it cannot be classified as ferro-or anti-ferromagnetism. But there is a ground state in which
the spins aligned in certain directions which appear to be random for each spin. The RBIM
and EA spin glass models both are developed from Ising model by changing the interaction
from single value to multi-value with the probability distribution function that constrained
the value of interaction in certain range.

In the Ising model, the magnetic interactions are a single value while in the random-bond
Ising model, interactions are distributed according to the distribution rules. When the interactions
distributed with zero mean, the domains of ferromagnetic and antiferromagnetic occur equally.
When we look at macroscopic scale, the magnetization of the system is zero.  But if we look at
microscopic scale, the local magnetization is not zero which is the property of spin glass. In this
work, we will focus on the random-bond Ising model in which the distribution of magnetic
interactions is Gaussian distribution. By using the hypothesis that adding another material
will cause the system to become disorder. As the result, the width of the interaction became
wider. Since the RBIMûs interactions always more than zero while EA spin glassûs interaction
can be both positive and negative with zero average, there should be cross-over regimes between
ferromagnetic random-bond and possible complex phases such as spin glass phase as the width
of the interaction distribution is varied.
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Model
We investigate phase transition of the modified random-bond Ising model in

which the magnetic interaction is distributed according to Gaussian distribution. The Gaussian
distribution in the spin glass model in the previous reference [4] has zero mean and distributed
equally in the negative and positive regions. In random bond Ising model, the magnetic
interaction is uniformly distributed in positive region only. However, in this model the magnetic
interaction is distributed in the Gaussian form with positive mean and the width of the interaction
is varied. The model consist of 2-dimensional square lattice Ising spin Si = ±1. The Hamiltonian
of the system can be written as

H = - Jij Si Sij ,
〈ij〉 
∑

while the interactions Jij are distributed according to

p(Jij) = [(2 )1/2J]-1exp[-(Jij - J
0
)2/2J2],π

and the interactions are accounted only the nearest neighbor sites. Parameter J
indicates the width of interactionûs distribution therefore it directly related to the degree
of disorder in the system. Parameter J0 is the center of distribution as shown in figures 1.
In this model, the interactions can be both positive and negative depending on the width of the
interaction. At low disorder (J → 0), the interactions distribute in the positive region only. As the
result, the system should behave like the Ising model. At high disorder (J >>0), the interactions
distribute in both positive and negative regions. As the result, the system should behave like spin
glass model. There should be a cross over between Ising phase and spin glass phase as the width
of the interaction is increased.
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Figure 1 Gaussian distribution interaction with high and low disorder.

The center of interaction distribution has been set to 1 and the value of J is start from
0 to 2, while the temperatures are varied from 1 to 4. Unit of all value are in unit of energy.
The number has been used in order to compare the strength of interaction with thermal energy.

Results
We use Monte Carlo simulation method to obtain the result. The simulations are

performed in heat-bath MC method [13] with the periodic boundary condition. The results are
divided in to two parts. In the first, the phase diagram has been drawn according to average
magnetization and spin glass magnetization parameters. The second part, some of the transition
points have been obtained from binder cumulant.

Phase Diagram-
The phase diagram can be obtained with 2 parameters [14], average magnetization

(m) and mean-square disorder local moment or spin glass magnetization (q). Both parameters can
be defined as [14, 17],
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Magnetic phase of the system can be categorized as the following [15]
1. paramagnetic if both m and q are zero.
2. ferromagnetic if both m and q are non-zero.
3. spin glass if q is non-zero but m is zero.

The average magnetization can be used to identify the ferromagnetic or paramagnetic
in the macroscopic scale. But spin glass phase and paramagnetic phase both have zero average
magnetization, so only average magnetization is not enough to distinguish these phases.
The mean-square disorder local moment or spin glass magnetization is used to measure
the magnetic order of the system. In macroscopic scale, spin glass phase behaves similar to
paramagnetic phase. However in microscopic scale, the magnetic domains occur in spin glass
phase due to the interactionsû distribution therefore the spin glass phase have zero average
magnetization but non-zero spin glass magnetization. The results from the simulation of average
magnetization are shown in figures 2 and 3 and spin glass magnetization are shown in figures 4
and 5. The phase diagram can be determined by combine these diagrams together as shown in
figure 6.

Figure 2 m›J›T phase diagram
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Figure 3 m›J›T phase diagram

Figure 4 q›J›T phase diagram
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Figure 5 q›J›T phase diagram

Binder cumulant
The Binder cumulants which is used in this work are Binder cumulant for magnetization

[17] and spin glass Binder cumulant [16, 18]. The Binder cumulant for magnetization is
defined by

3〈m2〉2
〈m4〉

〈q4〉
〈q2〉2

U = 1 -

g = 1 
2

(3- ).

and the spin glass Binder cumulant is defined by
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At critical temperature, the Binder cumulants are independent of the size of the
system, as a result, the Binder cumulants should be the same value. The critical temperature
which the transition occurs can be determined by the intersection of binder cumulants.
We simulate the Binder cumulant with the system size of 10 x 10, 20 x 20, 30 x 30, 40 x 40
and 50 x 50. The binder cumulants of the system have been calculated by changing the
temperature at certain value of parameter J. It is expected that with higher value of J the
intersection point in Binder cumulant for magnetization disappear. On the other hand with
decreasing of value of J the intersection points in the spin glass Binder cumulant should be at the
same position as the intersection point in Binder cumulant for magnetization.

Figure 6 Phase diagram of the system.
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The transition from ferromagnetic phase to paramagnetic phase can be observed

from the intersection points in figures 7 and the transition from spin glass phase to paramagnetic

phase can be observed from the intersection points in figures 8. Points A, B and C are transition

points according to Binder cumulant of magnetization, U from figure 7. Points D, E, F and G are

the transition points according to the spin glass Binder cumulant, g from figure 8. The results

from both U and g can be used to identify the transition points rather accurately. As it can be

seen from figure 6 that the transition lines, bold black line, between three phases have been

drawn based on the position of the transition points obtained from the Binder cumulants. It has

been seen that we are not able to obtain the transition points between SG phase and FM phase.

However the transition line that separate FM phase and SG phase has been drawn according

to the value of magnetization, m from figures 2 and 3. Note that points B and C are not identical

but the position of these two points is close to each other.

Figure 7 Magnetization Binder cumulant as a function of temperature at J = 0.25, J = 0.50,
J = 0.75 at difference system size.
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Figure 8 Spin glass Binder cumulant as a function of temperature at J = 0.50, J = 1.00,
J = 1.50, J = 2.00 at difference size.

The existence of three phases can be explained based on the shape of the distribution

of the magnetic interactions. At zero J the system behaves like a normal Ising model. At small

value of J, the value of almost all of the magnetic interactions are positive hence the system

exhibits the transition from paramagnetic phase to ferromagnetic phase as temperature decreases.

At high value of J the value of magnetic interactions between pair of spins can be both positive

and negative. This leads to the formation of ferromagnetic domains coupled together with

antiferromagnetic interaction. This results in the vanishing of total magnetization m even at low

temperature as can be seen from figure 2 and 3. However this phase is different from the

paramagnetic phase in which the finite value of spin glass magnetization q occurs.
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Conclusion
We have studied the phase transition in modified random-bond Ising model.

The modified random-bond Ising model is base on 2 dimensional Ising model with interactions

that distributed in the form of Gaussian distribution. The hypothesis is that adding another

material will cause the system become disordered, as the result the width of the interaction

become wider. Phase diagram can be obtained by using the diagrams of average magnetization,

mean-square disorder average local moment and the Binder cumulants.
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