บทความรับเชิญ

An Intermediate Value Theorem for Graph Parameters

Narong Punnim*

ABSTRACT

Let \mathcal{G} be the class of all graphs and $\mathcal{J} \subseteq \mathcal{G}$. A graph parameter π is said to satisfy an *intermediate value theorem over a class of graphs* \mathcal{J} if $G, H \in \mathcal{J}$ with $\pi(G) < \pi(H)$, then for every integer k with $\pi(G) \leq k \leq \pi(H)$ there is a graph $K \in \mathcal{J}$ such that $\pi(K) = k$. If a graph parameter π satisfies an intermediate value theorem over \mathcal{J} , then we write $(\pi, \mathcal{J}) \in IVT$. Thus if $(\pi, \mathcal{J}) \in IVT$, then $\{\pi(G) : G \in \mathcal{J}\}$ is uniquely determined by $\min(\pi, \mathcal{J}) := \min\{\pi(G) : G \in \mathcal{J}\}$ and $\max(\pi, \mathcal{J}) := \max\{\pi(G) : G \in \mathcal{J}\}$. The problem of finding $\min(\pi, \mathcal{J})$ and $\max(\pi, \mathcal{J})$ is called the *extremal problem in graph theory*. We will discuss our results in this direction. Some open problems are also reviewed.

AMS Subject Classification 2010: 05C07, 05C35

Keywords: intermediate value theorem, extremal problem, graph parameter

*Corresponding author, email: narong@swu.ac.th

1. Introduction

Only finite simple graphs are considered in this paper. For the most part, our notation and terminology follows that of Bondy and Murty [1].

Let \mathcal{J} be a class of non-isomorphic graphs. A graph transformation on \mathcal{J} is a subset of $\mathcal{J} \times \mathcal{J}$. Let ρ be a graph transformation on \mathcal{J} . We can define the ρ -graph having \mathcal{J} as its vertex set and there is a directed edge from G to H if and only if $(G, H) \in \rho$. If ρ is symmetric, it yields an undirected graph and otherwise a directed graph.

Harary [2] used a graph transformation called a *fundamental exchange* or an *edge* exchange as follows: Let G be a connected graph of order $n \ge 3$. The tree graph, $\mathbf{T}(G)$, of G is defined by specifying $V(\mathbf{T}(G))$ as the set of all spanning trees of G, and two vertices T_1 ; $T_2 \in$ $V(\mathbf{T}(G))$ are adjacent in $\mathbf{T}(G)$ if and only if T_1 and T_2 have exactly n - 2 edges in common. This is an example of an undirected ρ -graph. It was proved by Harary [2] that the tree graph $\mathbf{T}(G)$ is connected.

A non-increasing sequence $\mathbf{d} = (d_1, d_2, ..., d_n)$ of non-negative integers is a graphic degree sequence if it is a degree sequence of some graph G. In this case, G is called a *realization* of **d**. A degree sequence of an r-regular graph of order n is denoted by r^n .

Let G be a graph. For the distinct vertices a, b, c, and d in V(G) such that ab and cdare edges in G while ac and bd are not edges in G. Define $G^{\sigma(a,b,c,d)}$, simply written G^{σ} , to be the graph obtained from G by deleting the edges ab and cd and adding the edges ac and bd. The operation $\sigma(a,b,c,d)$ is called a *switching operation*. For a graphic degree sequence d, let $\mathcal{R}(\mathbf{d})$ and $\mathcal{CR}(\mathbf{d})$ be the sets of non-isomorphic realizations and connected realizations of \mathbf{d} , respectively. The $\Sigma(\mathbf{d})$ is defined as a relation on $\mathcal{R}(\mathbf{d})$ as $(G, H) \in \Sigma(\mathbf{d})$ if $G \ncong H$ and there is a switching σ on G such that $H = G^{\sigma}$. Thus the $\Sigma(\mathbf{d})$ -graph is simple. The concept of $\Sigma(\mathbf{d})$ -graph was introduced and developed in a joint paper by Eggleton and Holton [3]. It provides a structured way to examine all the graphs which "realize" a given degree sequence. The $\Sigma(\mathbf{d})$ -graph and the subgraph induced by $\mathcal{CR}(\mathbf{d})$ are connected as a consequence of Taylor [4, 5]. For positive integers m and n with $0 \le m \le \binom{n}{2}$, let $\mathcal{G}(m, n)$ and $\mathcal{CG}(m, n)$ be the sets of all non-isomorphic graphs and the set of connected graphs of order n and size m, respectively. Let $G \in \mathcal{G}(m, n)$ with $e \in E(G)$ and $f \notin E(G)$. Define $G^{t(e,f)}$ to be a graph with $V(G^{t(e,f)}) = V(G)$ and $E(G^{t(e,f)}) = E(G - e + f)$. A transformation t(e, f) is called an *edge jump*. Now let $\mathcal{T}(m, n)$ be a relation on $\mathcal{G}(m, n)$ defined by $(G, H) \in \mathcal{T}(m, n)$ if $G \not\cong H$ and H can be obtained from G by an edge jump. Since $\mathcal{T}(m, n)$ is symmetric, it follows that the $\mathcal{T}(m, n)$ -graph is simple.

2. An intermediate value theorem

Let \mathcal{G} be the class of all graphs. A graph parameter π is said to satisfy an *intermediate* value theorem over a class of graphs \mathcal{J} if $G, H \in \mathcal{J}$ with $\pi(G) < \pi(H)$, then for every integer k with $\pi(G) \le k \le \pi(H)$ there is a graph $K \in \mathcal{J}$ such that $\pi(K) = k$. If a graph parameter π satisfies an intermediate value theorem over \mathcal{J} , then we write $(\pi, \mathcal{J}) \in \text{IVT}$. Thus if $(\pi, \mathcal{J}) \in \text{IVT}$, then $\{\pi(G) : G \in \mathcal{J}\}$ is uniquely determined by

 $\min(\pi, \mathcal{J}) := \min\{\pi(G) : G \in \mathcal{J}\} \text{ and } \max(\pi, \mathcal{J}) := \max\{\pi(G) : G \in J\}.$

In 1964, Erdös and Gallai [6] proved that any regular graph on *n* vertices has chromatic number $k \leq \frac{3n}{5}$ unless the graph is complete. Commenting on their result in a personal communication, Erdös wrote to Pullman "probably such a graph exists for every $k \leq \frac{3n}{5}$, except possibly for trivial exceptional cases."

Caccetta and Pullman [7] confirmed and strengthened Erdös' conjecture by showing that if k > 1, then for every $n \ge \frac{5k}{3}$, there exists a connected, regular, *k*-chromatic graph of order *n*. This is an example an intermediate value theorem of χ over the class of all connected regular graphs of order *n*.

2.1 The Σ (d)-graphs

We will review in this subsection an intermediate value theorem on various graph parameters over $\mathcal{R}(\mathbf{d})$ and $\mathcal{CR}(\mathbf{d})$. We first prove a general result as follows:

Theorem 2.1 Let $\mathcal{J} \subseteq \mathcal{R}(\mathbf{d})$ and the subgraph of $\Sigma(\mathbf{d})$ -graph induced by J be connected. Let π be a graph parameter. For any graph G of degree sequence \mathbf{d} and any switching σ , $if|\pi(G) - \pi(G^{\sigma})| \leq 1$, then $(\pi, \mathcal{J}) \in \text{IVT}$.

Proof. Let $H, K \in \mathcal{J}$ such that $\pi(H) = \min\{\pi(G) : G \in \mathcal{J}\}$ and $\pi(K) = \max\{\pi(G) : G \in \mathcal{J}\}$. Since the subgraph of $\Sigma(\mathbf{d})$ -graph induced by \mathcal{J} is connected, there exists a path $P : H = G_1, G_2, ..., G_t = K$ in \mathcal{J} . Thus there exists a sequence $\sigma_1, \sigma_2, ..., \sigma_{t-1}$ such that $G_{i+1} = G_i^{\sigma_i}$. Since $|\pi(G_i) - \pi(G_{i+1})| = |\pi(G_i) - \pi(G_i^{\sigma_i})| \le 1$, it follows that $\{\pi(G_i) : i = 1, 2, ..., t\} = \{k \in \mathbb{Z} : \pi(H) \le k \le \pi(K)\}$. Thus $(\pi, \mathcal{J}) \in IVT$.

The following result can be obtained as consequences of Taylor [4, 5].

Corollary 2.2 Let π be a graph parameter. For a graph G of degree sequence **d** and a switching σ , if $|\pi(G) - \pi(G^{\sigma})| \leq 1$, then $(\pi, \mathcal{R}(\mathbf{d})) \in \text{IVT}$ and $(\pi, \mathcal{CR}(\mathbf{d})) \in \text{IVT}$.

We will now review an intermediate value theorem on several graph parameters over $\mathcal{R}(\mathbf{d})$ and $\mathcal{CR}(\mathbf{d})$. Here we use $\omega(G)$ and $\alpha(G)$ for the clique number and independent number of a graph *G*, respectively. We proved in [8] and [9] the following result.

Theorem 2.3 Let *G* be a graph and σ be a switching on *G*. If $\pi \in \{\chi, \omega\}$, then $|\pi(G) - \pi(G^{\sigma})| \le 1$. Note that $\alpha(G) = \omega(\overline{G})$ for any graph *G* and $\overline{G}^{\sigma(a,b,c,d)} = \overline{G^{\sigma(a,b,c,d)}}$. Thus we have the following corollary.

Corollary 2.4 Let G be a graph and σ be a switching on G. Then $|\alpha(G) - \alpha(G^{\sigma})| \le 1$. For the matching number $\alpha'(G)$ of a graph G we obtained in [10] the following result.

Theorem 2.5 If σ is a switching on G, then $|\alpha'(G) - \alpha'(G^{\sigma})| \le 1$.

The following results were obtained by Gallai [11] showing a relationship between the independence and covering number. Here we use $\beta(G)$ and $\beta'(G)$ for the covering and edge covering number of a graph *G*, respectively.

Theorem 2.6 For a graph G of order n, $\alpha(G) + \beta(G) = n$.

Theorem 2.7 For a graph G of order n and $\delta \ge 1$. $\alpha'(G) + \beta'(G) = n$. As a consequence we obtain the following result.

Theorem 2.8 Let G be a graph, $\delta(G) \ge 1$ and σ be a switching on G. If $\pi \in {\beta, \beta'}$, then $|\pi(G) - \pi(G^{\sigma})| \le 1$.

Let G be a graph and $F \subseteq V(G)$. Then F is called an *induced forest* of G if G[F] contains no cycle. For a graph G, we define, f(G) as:

 $f(G) := \max\{|F| : F \text{ is an induced forest in } G\}.$

The graph parameter f is called the *forest number*. The problem of determining the minimum number of vertices whose removal eliminates all cycles in a graph G is known as the *decycling number* of G, and is denoted by $\phi(G)$: Thus for a graph G of order n, $\phi(G) + f(G) = n$. We proved in [12] the following results on f and ϕ .

Theorem 2.9 If S is any subset of vertices of G such that G[S] is a forest, and σ is any switching on G, then $G^{\sigma}[S]$ contains at most one cycle.

Proof. Let $S \subseteq V(G)$ and G[S] contains no cycle. Let $a, b, c, d \in V(G)$ with $ab, cd \in E(G)$ and $ac, bd \notin E(G)$. Since G[S] contains no cycle, it follows that G[S] + ac and G[S] + bd contains at most one cycle. Thus if $|S \cap \{a, b, c, d\}| \leq 3$, then $G^{\sigma}[S]$ contains at most one cycle. Now suppose that $\{a, b, c, d\} \subseteq S$. Since G[S] is a forest, for any two vertices $u, v \in S$ there is

at most one (u, v)-path in G[S]. In particular, if there is an (a, c)-path in G[S], then there is no (b, d)-path in G[S]. Thus $G^{\sigma}[S]$ contains at most one cycle, where $\sigma = \sigma(a, b; c, d)$.

The following corollary can be obtained as a consequence of above theorem.

Corollary 2.10 Let G be a graph and σ be a switching on G. If $\pi \in \{f, \phi\}$, then $|\pi(G) - \pi(G^{\sigma})| \leq 1$.

A dominating set of a graph G = (V, E) is a subset D of V such that each vertex of V - D is adjacent to at least one vertex of D. The domination number $\gamma(G)$ of a graph G is the cardinality of a minimal dominating set with the least number of elements. We proved in [13] the following results.

Theorem 2.11 If G is a graph with $\gamma(G) = \gamma$ and σ is a switching on G, then $\gamma(G^{\sigma}) \leq \gamma + 1$.

Proof. Let D be a minimum dominating set of G. Let a, b, c, $d \in V(G)$ with $ab, cd \in E(G)$ and $ac, bd \notin E(G)$. Put $\sigma = \sigma(a, b; c, d)$. If $\{a, b, c, d\} \cap D = \emptyset$ or $\{a, b, c, d\} \subseteq D$, then D is a dominating set of G^{σ} . If $a, b \in D$ or $c, d \in D$, then D is a dominating set of G^{σ} . Finally if $a \in D$ or $c \in D$, then $D \cup \{b\}$ or $D \cup \{d\}$ is a respective dominating set of G^{σ} . Thus $\gamma(G^{\sigma}) \leq \gamma + 1$.

By the fact that a switching is symmetric we obtain the following result.

Corollary 2.12 If σ is a switching on G, then $|\gamma(G) - \gamma(G^{\sigma})| \le 1$.

Combining the results in this subsection we can conclude the following theorem.

Theorem 2.13 Let $\mathbf{d} = (d_1, d_2, ..., d_n), d_1 \ge d_2 \ge ... \ge d_n \ge 1$ be a graphic degree sequence. Then $(\pi, \mathcal{R}(\mathbf{d})) \in \text{IVT}$ and $(\pi, \mathcal{CR}(\mathbf{d})) \in \text{IVT}$, where $\pi \in \{\chi, \omega, f, \phi, \alpha, \alpha', \beta, \beta', \gamma\}$.

2.2 The T(m, n)-graphs

We recently proved in [14] that the $\mathcal{T}(m, n)$ -graph and the subgraph of the $\mathcal{T}(m, n)$ -graph induced by $C\mathcal{G}(m, n)$ are connected. We also obtained in the same paper the following results.

Theorem 2.14 Let $\pi \in \{\chi, \omega, f, \phi, \alpha, \alpha', \beta, \beta', \gamma\}$ Then for any $G \in \mathcal{G}(m, n)$ and an edge jump t(e, f) on G, $|\pi(G) - \pi(G^{t(e,f)})| \le 1$.

Theorem 2.15 Let $\pi \in \{\chi, \omega, f, \phi, \alpha, \alpha', \beta, \beta', \gamma\}$ and $\mathcal{J} \in \{G(m, n), C\mathcal{G}(m, n)\}$. Then $(\pi, \mathcal{J}) \in IVT$.

3. The extremal problems

An *extremal problem* asks for minimum and maximum values of a function $\pi : \mathcal{J} \Rightarrow \mathbb{Z}$. In our context we consider the problem of determining $\min(\pi, \mathcal{J})$ and $\max(\pi, \mathcal{J})$, where π is a graph parameter and \mathcal{J} is a class of graphs. We emphasize on the graph parameters as stated in Section 2 and the classes of graphs $\mathcal{J} \in \{\mathcal{R}(r^n), \mathcal{CR}(r^n), \mathcal{G}(m, n), \mathcal{CG}(m, n)\}$. Therefore we use the following notation.

 $\min(\pi, r^{n}) = \min\{\pi(G) : G \in \mathcal{R}(r^{n})\},\\ \max(\pi, r^{n}) = \max\{\pi(G) : G \in \mathcal{R}(r^{n})\},\\ \min(\pi, r^{n}) = \min\{\pi(G) : G \in \mathcal{CR}(r^{n})\},\\ \max(\pi, r^{n}) = \max\{\pi(G) : G \in \mathcal{CR}(r^{n})\},\\ \min(\pi; m, n) = \min\{\pi(G) : G \in \mathcal{G}(m, n)\},\\ \max(\pi; m, n) = \max\{\pi(G) : G \in \mathcal{G}(m, n)\},\\ \min(\pi; m, n) = \min\{\pi(G) : G \in \mathcal{CG}(m, n)\},\\ \min(\pi; m, n) = \max\{\pi(G) : G \in \mathcal{CG}(m, n)\},\\ \max(\pi; m, n) = \max\{\pi(G) : G \in \mathcal{CG}(m, n)\}.$

3.1 $\mathcal{R}(r^n)$ and $\mathcal{CR}(r^n)$

A classical result of Erdös and Gallai [6] gives a motivation to the extremal problem.

Theorem 3.1 An *r*-regular graph *G* of order n > r + 1 has chromatic number $k \le \frac{3n}{5}$, with equality if and only if the complementary graph \overline{G} of *G* is the union of disjoint 5-cycles.

We obtained in [8] the extremal values of χ .

Theorem 3.2 If $r \ge 2$ and $n \ge 2r$, then

$$\min(\chi, r^n) = \begin{cases} 2 & if n is even, \\ 3 & if n is odd. \end{cases}$$

Theorem 3.3 If $r \ge 2$, then

- 1. $\min(\chi, r^{r+1}) = \max(\chi, r^{r+1}) = r + 1$, and
- 2. $\min(\chi, r^{r+2}) = \max(\chi, r^{r+2}) = (r + 2)/2.$

Theorem 3.4 For any $r \ge 4$ and odd integers such that $3 \le s \le r$, let q and t be integers satisfying r + s = sq + t, $0 \le t < s$. Then

$$\min(\chi, r^{r+s}) = \begin{cases} q & \text{if } t = 0, \\ q+1 & \text{if } 1 \le t \le s-2, \\ q+2 & \text{if } t = s-1. \end{cases}$$

Theorem 3.5 For any even integer $r \ge 6$ and any even number s such that $4 \le s \le r$, let q and t be integers satisfying r + s = sq + t, $0 \le t < s$. Then

$$\min(\chi, r^{r+s}) = \begin{cases} q & \text{if } t = 0, \\ q+1 & \text{if } t \ge 2. \end{cases}$$

By using Brooks' theorem [15] and some graph construction we obtained the following theorems in [8].

```
Theorem 3.6 Let r \ge 2. Then
```

1.
$$\max(\chi, r^{2r}) = r$$
,
2. $\max(\chi, r^{2r+1}) = \begin{cases} 3 \text{ if } r = 2, \\ r \text{ if } r \ge 4, \end{cases}$
3. $\max(\chi, r^n) = r + 1 \text{ for } n \ge 2r + 2$

Theorem 3.7 For any r and s such that $3 \le s \le r - 1$, we have

- 1. $\max(\chi, r^{r+s}) \ge (r + s)/2$ if r + s is even, and
- 2. $\max(\chi, r^{r+s}) \ge (r + s 1)/2$ if r + s is odd.

The exact values of $\max(\chi, r^n)$ are not easy to obtain if $r + 3 \le n \le 2r - 1$. Result of Theorem 3.1 gives an upper bound for χ in the class of connected regular graphs of order *n* but the bound can be very far from the actual value depending on the regularity. We were able to improve the bound in [16] by introducing the notion of F(j)-graph.

Let j be a positive integer. An F(j)-graph is a (j-1)-regular graph G of minimum order f(j) with the property that $\chi(\overline{G}) > f(j)/2$. It is easy to see that F(3)-graph is C_5 and f(3) = 5. We found F(j)-graphs for all odd integers j as stated in the following theorems.

Theorem 3.8 For odd integer $j \ge 3$, we have $f(j) = \frac{5}{2}(j-1)$ if $j = 3 \pmod{4}$ and $f(j) = 1 + \frac{5}{2}(j-1)$ if $j \equiv 1 \pmod{4}$.

Theorem 3.9 [16] Any *r*-regular graph of order *n* with n - r = j odd and $j \ge 3$ has chromatic number at most $\frac{f(j) + 1}{2f(j)} \cdot n$, and this bound is achieved precisely for those graphs with complement equal to a disjoint union of F(j)-graphs.

Problem 1. Find an F(j)-graph for even integer $j \ge 4$.

Problem 2. Find $\max(\chi, r^{r+j})$ if j is even and $4 \le j \le r-2$.

The extremal problem for ω has been completely answered in [9]. Since K_{r+1} is the only *r*-regular graph of order r + 1, it follows that $\min(\omega, r^{r+1}) = r + 1$. Given positive integers n and k with $k \le n$, there exists a connected graph G of order n with $\omega(G) = k$. As we shall see in the next theorem that there is no regular graph G of order n having $\omega(G)$ strictly lies between $\frac{n}{2}$ and n.

Theorem 3.10 Let $\mathbf{d} = r^n$ be a graphic degree sequence with $r+2 \le n \le 2r+1$. Then $\max(\omega, r^n) = \left|\frac{n}{2}\right|$.

The idea of obtaining $\min(\omega, r^n)$ is similar to what we have done for $\min(\chi, r^n)$ and we have $\min(\omega, r^n) = \min(\chi, r^n)$ in all situations.

Problem 3. We have obtained $\min(\omega, r^n)$ and $\max(\omega, r^n)$ in all situations. It is interesting to find $\min(\omega, r^n)$ and $\max(\omega, r^n)$.

Problem 4. By using the relation $\alpha(G) = \omega(\overline{G})$, can we obtain $\min(\alpha, r^n)$, $\max(\alpha, r^n)$, $\min(\alpha, r^n)$ and $\max(\alpha, r^n)$?

For the graph parameter f, we found in [17] a lower bound of min(f, d) by using the *probabilistic method.* In particular, we proved the following theorem.

Theorem 3.11 Let G be a graph having degree sequence $\mathbf{d} = (d_1, d_2, ..., d_n), d_1 \ge d_2 \ge ... \ge d_n \ge 1$. Then

$$f(G) \ge 2 \sum_{i=1}^{n} \frac{1}{d_i + 1}$$

The value of min(f, r^n) is not easy to obtain if we work on *r*-regular graphs. It is reasonable to extend the class of *r*-regular graphs of order *n* to a larger class $\mathcal{G}_{\Delta}(n)$. Let *n* and Δ be positive integers with $n > \Delta$. Let $\mathcal{G}_{\Delta}(n)$ be the class of all graphs *G* of order *n* and $\Delta(G) = \Delta$. Let $\mathbf{d} = (d_1, d_2, ..., d_n)$ be a sequence of non-negative integers. Define $\overline{\mathbf{d}}$ a degree sequence $(\overline{d_1}, \overline{d_2}, ..., \overline{d_n})$, where $\overline{d_i} = n - d_i - 1$, for i = 1, 2, ..., n. It is clear that **d** is graphic if and only if $\overline{\mathbf{d}}$ is. We proved in [17] the following results. **Theorem 3.12** Let $\mathbf{d} = (d_1, d_2, ..., d_n), d_1 \ge d_2 \ge ... \ge d_n \ge 1$ be a graphic degree sequence and $d_1 + 1 \le n \le 2d_1 + 1$. Then

1. min(f, d) = 2 if and only if $d_1 = d_2 = d_3 = \cdots = d_n$ and $n = d_1 + 1$ and

2. if **d** does not have a complete graph as its realization, then $\min(f, d) = 3$ if and only if \overline{d} has a disjoint union of stars as its realization.

Theorem 3.13 Let $n = (\Delta + 1)q + t$, $0 \le t \le \Delta$. Then

- 1. $\min(f, \mathcal{G}_{\Delta}(n)) = 2q$, if t = 0, 2. $\min(f, \mathcal{G}_{\Delta}(n)) = 2q + 1$, if t = 1, and
- 3. min(f, $\mathcal{G}_{\Delta}(n)$) = 2q + 2, if $2 \le t \le \Delta$.

With some modification of Theorem 3.13 in the class of *r*-regular graphs of order n and some properties of F(j)-graph, we found min(f, r^n) in all situations as stated in the following theorems in [18].

Theorem 3.14 For $r \ge 3$, and n = r + j, $1 \le j \le r + 1$

min(f, rⁿ) = 2, if and only if n = r + 1,
 min(f, rⁿ) = 3, if and only if n = r + 2,
 min(f, rⁿ) = 4, for all even integers n, r + 3 ≤ n,
 min(f, rⁿ) = 4, for all odd integers n, r + 3 ≤ n and n ≥ f(j),
 min(f, rⁿ) = 5, for all odd integers n, r + 3 ≤ n and n < f(j),
 min(f, rⁿ) = 5, for all odd integers n, r + 3 ≤ n and n < f(j),

where $f(j) = \frac{5}{2} (j-1)$ if $j \equiv 3 \pmod{4}$, and $f(j) = 1 + \frac{5}{2} (j-1)$ if $j \equiv 1 \pmod{4}$.

Theorem 3.15 For $n \ge 2r + 2$ and $r \ge 3$, write n = (r + 1)q + t, $q \ge 2$ and $0 \le t \le r$. Then

- 1. $\min(f, r^n) = 2q$ if t = 0,
- 2. $\min(f, r^n) = 2q + 1$ if t = 1,
- 3. $\min(f, r^n) = 2q + 2$ if $2 \le t \le r = 1$,
- 4. $\min(f, r^n) = 2q + 3$ if t = r.

We obtained in [12] the values of $max(f, r^n)$, for all r and n as stated in the following theorems.

Theorem 3.16

$$\max(\mathbf{f}, r^n) = \begin{cases} n-r+1 & \text{if } r+1 \le n \le 2r-1, \\ \lfloor \frac{nr-2}{2(r-1)} \rfloor & \text{if } n \ge 2r. \end{cases}$$

Note that if $r \ge 2$, then max(f, r^n) = Max(f, r^n). The investigation of Min(f, r^n) was considered in [19] and we settled almost all cases as stated in the following results.

Theorem 3.17 Let *n* be an even integer $n \ge 12$. Then

$$\operatorname{Min}(\mathsf{f}, 3^n) = \begin{cases} \frac{5}{8}n - \frac{1}{4} & \text{if } n \equiv 2 \pmod{8}, \\ \left\lfloor \frac{5}{8}n \right\rfloor & \text{otherwise.} \end{cases}$$

Theorem 3.18 Let n and r be integers with $r \ge 4$. Then

$$\operatorname{Min}(\mathbf{f}, r^n) \ge \left\lceil \frac{2n}{r} \right\rceil.$$

Let n = rq + t, $0 \le t \le r - 1$, $r \ge 4$. Then Min(f, $r^n \ge 2q + \lceil \frac{2t}{r} \rceil$. By construction we have the following results.

$$\operatorname{Min}(\mathbf{f}, r^n) = \begin{cases} 2q & \text{if } t = 0, \\ 2q + 1 & \text{if } t = 1, 2 \\ 2q + 2 & \text{if } t > \frac{r}{2}. \end{cases}$$

Problem 5. Find Min(f, r^n) if $3 \le t \le \frac{r}{2}$.

Let $\mathcal{B}(r^{2n})$ be the class of *r*-regular bipartite graphs of order 2n. It was shown in [20], page 53 that the subgraph of the $\Sigma(r^{2n})$ -graph induced by $\mathcal{B}(r^{2n})$ is connected. Therefore $(f, \mathcal{B}(r^{2n})) \in IVT$. We write min $(f, \mathcal{B}(r^{2n}))$ for min $\{f(G) : G \in \mathcal{B}(r^{2n})\}$ and max $(f, \mathcal{B}(r^{2n}))$ for max $\{f(G) : G \in \mathcal{B}(r^{2n})\}$. Thus $f(\mathcal{B}(r^{2n}))$ is uniquely determined by min $(f, \mathcal{B}(r^{2n}))$, and max $(f, \mathcal{B}(r^{2n}))$. Evidently, min $(f, \mathcal{B}(r^{2n})) = max(f, \mathcal{B}(r^{2n})) = 2n$ if $r \in \{0, 1\}$, max $(f, \mathcal{B}(2^{2n})) =$ 2n - 1 and min $(f, \mathcal{B}(2^{2n})) = \lfloor \frac{3n}{2} \rfloor$. We proved in [21] the following theorems. **Theorem 3.19** If $r \ge 2$, then $max(f, \mathcal{B}(r^{2n})) = max(f, r^{2n}) = \lfloor \frac{nr-1}{r-1} \rfloor$.

Theorem 3.20 min(f, $\mathcal{B}(3^{2n})$) = n + $\lceil \frac{n}{4} \rceil$.

Theorem 3.21 min(f, $\mathcal{B}(4^{2n})$) = $n + \lceil \frac{n}{7} \rceil$.

The problem of determining min(f, $\mathcal{B}(r^{2n})$) is not easy if $r \ge 5$.

Problem 6. Find min(f, $\mathcal{B}(r^{2n})$) if $r \ge 5$.

Problem 7. Let $CB(r^{2n})$ be the class of connected *r*-regular bipartite graphs of order 2^n and $r \ge 2$. It is clear that $\max(f, CB(r^{2n})) = \max(f, B(r^{2n}))$. Find $\min(f, CB(r^{2n}))$.

Problem 8. The hypercube Q_n is a connected *n*-regular bipartite graph of order 2^n . The exact values of $f(Q_n)$ have been obtained when *n* is a power of 2. Details can be found in [22]. Find $f(Q_n)$ for other values of *n*.

In [10], we determined the values of $\min(\alpha', r^n)$ and $\max(\alpha', r^n)$ for all r and n. Since $\min(\alpha', 0^n) = \max(\alpha', 0^n) = 0$ and $\min(\alpha', 1^{2n}) = \max(\alpha', 1^{2n}) = n$, we can assume that $r \ge 2$ and $n \ge r + 1$.

An existence of an *r*-regular Hamiltonian graph of order *n* implies that $\max(\alpha', r^n) = \lfloor \frac{n}{2} \rfloor$. A component of a graph is *odd* or *even* according as it has odd or even number of vertices. We denote by o(G) the number of odd components of *G*. Tutte [23] proved the following theorem.

Theorem 3.22 The number of edges in a maximum matching of a graph G is $\frac{1}{2}(|V(G)|-d)$, where $d = \max_{S=V(G)} \{o(G - S) - |S|\}$.

Let F(r, d) be the minimum order of an *r*-regular graph *G* with $\alpha'(G) = \frac{1}{2}(|V(G)|-d)$. It is clear that $|V(G)| \equiv d \pmod{2}$. Wallis [24] found F(r, 2) for all $r \ge 3$. More precisely, he proved the following theorem.

Theorem 3.23 Let G be an r-regular graph with no 1-factor and no odd component. Then

$$|V(G)| \ge \begin{cases} 3r + 7 & \text{if } r \text{ is odd, } r \ge 3, \\ 3r + 4 & \text{if } r \text{ is even, } r \ge 6, \\ 22 & \text{if } r = 4. \end{cases}$$

Furthermore, no such graphs exist for r = 1 or 2.

If G is an r-regular graph with $\alpha'(G) = \frac{1}{2}(|V(G)|-d)$, then there exists a k-subset K of V(G) such that o(G - K) = k + d. If k = 0, then r is even, G contains d odd components, and each component of G has order at least r + 1. Suppose that $k \ge 1$ and G - K has an odd component with p vertices where $p \le r$. Thus the number of edges within the component is at most $\frac{1}{2}p(p-1)$. This means that the sum of degrees of these p vertices in G - K is at most p(p-1). But G is an r-regular graph, so the sum of degrees of these p vertices in G is pr. Hence the number of edges joining K to the component must be at least pr - p(p-1). For a fixed integer r and an integer p satisfying $1 \le p \le r$, the function f(p) = pr - p(p-1), $1 \le p \le r$ has minimum value f(1) = f(r) = r. So any odd component with r or less vertices is joined to K by r or more edges. Suppose that there are o_+ odd components of G - K with more than r vertices and o_- odd components with less than or equal to r vertices. Thus

$$o_+ + o_- = k + d \tag{1}$$

$$o_+ + ro_- \le kr. \tag{2}$$

From these 2 relations, we have $o_+ \ge \lfloor \frac{rd}{r-1} \rfloor = d + \lfloor \frac{d}{r-1} \rfloor$ and $k \ge \lfloor \frac{d}{r-1} \rfloor$. We obtained the following results in [10].

Theorem 3.24 Let r be an even integer, $r \ge 2$. Then F(r, d) = d(r + 1).

Corollary 3.25 Let r be an even integer, $r \ge 2$. If n = (r + 1)d + e, $0 \le e \le r$, then $\min(\alpha', r^n) = \frac{dr}{2} + \lfloor \frac{1+e}{2} \rfloor$.

Suppose that r is odd and $r \ge 3$. Let G be an r-regular graph of order n such that α' (G) = $\frac{1}{2}(n-d)$. Then d must be even. Put d = 2q. There exists a nonempty subset K of V (G) of cardinality k such that o(G - K) = k + 2q. By (1) and (2), we have

$$n \ge k + (r+2)o_+ \ge \left\lceil \frac{2q}{r-1} \right\rceil + (r+2) + 2q + \left\lceil \frac{2q}{r-1} \right\rceil = \left\lceil \frac{2q}{r-1} \right\rceil (r+3) + 2q(r+2).$$

Wallis [24] defined G(x, y) to be a graph with x+y vertices, x and y being of degree x+y-3 and x+y-2, respectively. Thus G(x, y) exists if and only if y is even and $y \ge 2$. It is noted that for any graph G(x, y), it has y vertices of degree r and x vertices of degree r-1. Let x_i , y_i , i = 1, 2, ..., m, be integers such that $G(x_i, y_i)$ exists for all i = 1, 2, ..., m. We then construct a graph

$$G(x_1, y_1) * G(x_2, y_2) * \dots * G(x_m, y_m)$$

from disjoint copies of the graphs by inserting a new vertex, say u, by joining u to all vertices of $G(x_i, y_i)$ which have the smallest degree, for i = 1, 2, ..., m. With this notion we see that for an odd integer $r \ge 3$, $q = 1, 2, ..., \frac{r-1}{2}$ and for any odd positive integers a_i , i = 1, 2, ..., 1 + 2q whose sum is r, it follows that

$$G_q = G(a_1, r + 2 - a_1) * G(a_2, r + 2 - a_2) * \dots * G(a_1 + 2q, r + 2 - a_1 + 2q)$$

is an *r*-regular graph on (r + 2)(1 + 2q) + 1 vertices with $\alpha'(G_q) = \frac{1}{2} (|V(G_q)| - 2q)$. We have the following results.

Theorem 3.26 For an odd integer $r \ge 3$, then

1.
$$F(r, 2q) = (r+2)(1+2q) + 1$$
, for $q = 1, 2, ..., \frac{r-1}{2}$,
2. $if q = \frac{r-1}{2}s + t, 0 \le t \frac{r-1}{2}$, then $F(r, 2q) = sF(r, r-1) + F(r, 2t)$, where $F(r, 0) = 0$

Corollary 3.27 Let *r* be an odd integer, $r \ge 3$. If $F(r, 2q) \le n < F(r, 2(q + 1))$, then $\min(\alpha', r^n) = \frac{1}{2}(n-2q)$.

Problem 9. It is clear that $(\alpha', C\mathcal{R}(r^n)) \in IVT$ and it is easy to see that $Max(\alpha', r^n) = \lfloor \frac{n}{2} \rfloor$. Find $Min(\alpha', r^n)$.

3.2 $\mathcal{G}(m, n)$ and $\mathcal{CG}(m, n)$

We will discuss in this subsection the extremal problem for graph parameters over $\mathcal{G}(m, n)$ and $\mathcal{CG}(m, n)$.

Mantel's theorem [25] provides the maximum number of edges that a 2-chromatic graph of order n can have. On the other hand the minimum number of edges in a 2-chromatic graph of order $n \ge 2$ is 1 and the minimum number of edges in a 2-chromatic connected graph of order $n \ge 2$ is n - 1. Turán [26] extended the result of Mantel by introducing the *Turán graph*. This result of Turán is viewed as the origin of extremal graph theory. The *Turán graph* $T_{n,r}$ is the complete *r*-partite graph of order *n* whose partite sets differ in cardinality by at most 1.

Theorem 3.28 Among the graphs of order *n* containing no complete subgraph of order r + 1, $T_{n,r}$ has the maximum number of edges.

In order to apply Turán's theorem in our context, we would like to state the following facts.

1. If n = rq + t, $0 \le t < r$, then $T_{n,r}$ consists of t partite sets of cardinality $\lfloor \frac{n}{r} \rfloor$ and r-t partite sets of cardinality $\lfloor \frac{n}{r} \rfloor$.

2. Let $G \in G(m, n)$. If $\omega(G) \leq r$, then $m \leq \varepsilon(T_{n,r})$.

3. $\varepsilon(T_{n,r}) = \binom{n-a}{2} + (r-1)\binom{a+1}{2}$, where $a = \lfloor \frac{n}{r} \rfloor$.

4. Let $t(n, r) = \varepsilon(T_{n,r})$. Then for a fixed *n*, we get t(n, r-1) < t(n,r) for all $r, 2 \le r \le n$. In fact $t(n, r) - t(n, r-1) \ge {a+1 \choose 2}$, where $a = \lfloor \frac{n}{r} \rfloor$.

We obtained in [14] the following theorems.

Theorem 3.29 Let m, n and k be positive integers with $n \ge k \ge 3$ and $\binom{k}{2} \le m < \binom{k+1}{2}$. Then $\max(\chi; m, n) = k$.

Theorem 3.30 Let m, n and $k \ge 2$ be positive integers satisfying $t(n, k-1) < m \le t(n, k)$. Then $\min(\chi; m, n) = k$.

We now conclude the following corollary.

Corollary 3.31 Let m, n and k be positive integers.

- 1. If $n \ge k$ and $\binom{k}{2} \le m < \binom{k+1}{2}$, then $\max(\omega; m, n) = k$.
- 2. If $t(n, k-1) < m \le t(n, k)$, then $\min(\omega; m, n) = k$.
- 3. If $t(n, k-1) < m \le t(n, k)$, then $Min(\chi; m, n) = k$.
- 4. If $k \ge 3$ and $t(n, k-1) < m \le t(n, k)$, then $Min(\omega; m, n) = k$.

Results on $Max(\chi; m, n)$ and $Max(\omega; m, n)$ can be obtained similarly as stated in the following theorems.

Theorem 3.32 Let n, m and k be positive integers with $n \ge k \ge 3$ and $\binom{k}{2} + n - k \le m < \binom{k+1}{2} + n - k - 1$. Then $Max(\chi; m, n) = k$.

Theorem 3.33 Let n,m and k be positive integers with $n \ge k \ge 3$ and $\binom{k}{2} + n - k \le m < \binom{k+1}{2} + n - k - 1$. Then $Max(\omega; m, n) = k$.

Thus all extreme values of χ and ω over $\mathcal{G}(m, n)$ and $\mathcal{CG}(m, n)$ are obtained in all situations.

The extremal values of the graph parameter f over $\mathcal{G}(m, n)$ and $\mathcal{CG}(m, n)$ were obtained in [27].

Let G be a graph and X, Y be disjoint nonempty subsets of V (G). Denote by $\varepsilon(X)$ the number of edges in G[X] and $\varepsilon(X, Y)$ the number of edges in G connecting vertices in X to vertices in Y.

Let $G \in \mathcal{G}(m, n)$ and F be a maximum induced forest of G. Let |F| = a. Therefore G - F has order n - a. An upper bound for m can be obtained by the following inequality.

 $m = \varepsilon(G - F) + \varepsilon(G - F, F) + \varepsilon(F) \le \binom{n-a}{2} + a(n-a) + (a-1).$

Let a = n - i for any $i \in \{1, 2, ..., n - 2\}$. Then $m \le (i + 1)n - \frac{i^2 + 3i + 2}{2}$ For an integer i = 1, 2, ..., n - 2, let

$$\mathbf{M}_{n}(n-i) := (i+1)n - \frac{i^{2}+3i+2}{2}$$

It is clear that $\mathbf{M}_n(n-i)$ is an integer. We showed in [27] that $\max(f; m, n) = n-i$ if and only if $\mathbf{M}_n(n-i+1) < m \le \mathbf{M}_n(n-i)$ by constructing a graph $G \in \mathcal{G}(m, n)$ with $\mathbf{M}_n(n-i+1) < m \le \mathbf{M}_n(n-i)$ and f(G) = n-i. Furthermore the graph G is connected. Therefore we have the following theorem.

Theorem 3.34 Let *n* and *m* be integers satisfying $0 < m \le {n \choose 2}$. The $\max(f; m, n) = n - i$ if and only if $\mathbf{M}_n(n-i+1) < m \le \mathbf{M}_n(n-i)$ and $\max(f; m, n) = n-i$ if and only if $m \ge n-1$ and $\mathbf{M}_n(n-i+1) < m \le \mathbf{M}_n(n-i)$.

In order to obtain the values of min(f; m, n), we first find the minimum number of edges of a graph of order n having the forest number a. Let $\mathcal{G}(n; f = a)$ be the set of graphs of order n having the forest number a. It is clear that $\mathcal{G}(n; f = a) \neq \emptyset$ if and only if $2 \le a \le n$. For integers n and a, let

$$\mathbf{m}_n(a) := \min\{\varepsilon(G) : G \in \mathcal{G}(n; f = a)\}:$$

Thus $\mathbf{m}_n(n) = 0$, $\mathbf{m}_n(n-1) = 3$ and $\mathbf{m}_n(2) = \binom{n}{2}$. It is easy to see that for a graph G of order $n \ge 2$, f(G) = 2 if and only if $G \cong K_n$. We now find $\mathbf{m}_n(a)$ for 2 < a < n. Theorem 3.12 gives a characterization of graphs having forest number 3. Thus $\mathbf{m}_n(3) = \binom{n}{2} - n + 1$, for all $n \ge 4$. We proved in [27] the following lemma.

Lemma 3.35 If G is a graph of order n with $\Delta(G) = \Delta$ and f(G) = 2q + 1 for some integer q, then $n \leq (\Delta+1)q + 1$.

By Lemma 3.35, we have a lower bound for the maximum degree of a given graph in terms of its order and its forest number. In other words, if G is a graph of order n, then $\Delta(G) \ge \left\lceil \frac{2n}{f(G)} \right\rceil - 1$. In particular, if f(G) = 2q for some integer q, then $\Delta(G) \ge \left\lceil \frac{n}{q} \right\rceil - 1$. By Lemma 3.35 the lower bound for $\Delta(G)$ can be improved if f(G) is odd. That is, if f(G) = 2q + 1 for some integer q, then $n \le (\Delta(G) + 1)q + 1$ which is equivalent to $\Delta(G) \ge \left\lceil \frac{n-1}{q} \right\rceil - 1$. We have the following corollary.

Corollary 3.36 Let G be a graph of order n and q be a positive integer. If f(G) = 2q, then $\Delta(G) \ge \lceil \frac{n}{q} \rceil - 1$, and if f(G) = 2q + 1, then $\Delta(G) \ge \lceil \frac{n-1}{q} \rceil - 1$.

Let $\mathcal{G}^*(n; f = a) = \{G \in \mathcal{G}(n; f = a) : G \text{ is a union of } \lceil \frac{a}{2} \rceil$ cliquesg}. It is clear that $\mathcal{G}^*(n; f = a) \subseteq \mathcal{G}(n; f = a)$. We have the following theorem.

Theorem 3.37 Let G be a graph of order n with f(G) = a. Then there exists a graph $H \in \mathcal{G}^*(n; f = a)$ such that $\varepsilon(H) \le \varepsilon(G)$.

By Theorem 3.37, we know the structure of graphs of order *n* with prescribed the forest number. In general, for a graph $G \in \mathcal{G}(n; f = a)$, there may be many such graphs $H \in \mathcal{G}^*(n; f = a)$. We now seek for such a graph *H* with minimum number of edges.

By using the results of Mantel [25] and Turán [26] as mentioned in the previous subsection, we have the following results.

1. Let $G = p_1 K_1 \cup p_3 K_3 \cup p_4 K_4 \cup \cdots \cup p_k K_k$. Then the order of G is $p_1 + 3p_3 + 4p_4 + \cdots + kp_k$ and $f(G) = p_1 + 2(p_3 + p_4 + \cdots + p_k)$. Suppose that $p_1 \ge 2$, $p_k \ge 1$ and $k \ge 4$. Then, by replacing $2K_1 \cup K_k$ by $K_3 \cup K_{k-1}$ we obtain a graph H with $\varepsilon(H) \le \varepsilon(G)$. Further, $\varepsilon(H) = \varepsilon(G)$ if and only if k = 4.

2. $\mathbf{m}_n(n-1) = 3$ if $n \ge 4$. Let $G \in \mathcal{G}(n; f = n-1)$. Then $\varepsilon(G) = 3$ if and only if $n \ge 4$ and $G = (n-3)K_1 \cup K_3$.

3. Let *a* be an integer with $\frac{2n}{3} \le a \le n - 1$. If (p, q) is the solution of p + 3q = n and p + 2q = a, then $G = pK_1 \cup qK_3$ satisfies f(G) = a.

4. Let *a* be an integer with $\frac{2n}{3} \le a \le n-2$. and $G \in \mathcal{G}(n; f = a)$ such that $\varepsilon(G) = \mathbf{m}_n(a)$. Then by Theorem 3.37, we can choose $G = p_1K_1 \cup p_3K_3 \cup p_4K_4 \cup \cdots \cup p_kK_k \in \mathcal{G}^*(n; f = a)$ and $k \le 4$. If k = 4, then $p_1 \ge 2$. Thus, there exists a graph $H = p_1K_1 \cup pK_3$ such that p+3q = n, p+2q = a and $\varepsilon(H) = \varepsilon(G) = \mathbf{m}_n(a)$.

5. Let *a* be an integer with $a < \frac{2n}{3}$ and $G \in \mathcal{G}(n; f = a)$ and $\Delta(G) \ge 3$. Thus if $G = p_1K_1 \cup pK_3 \cup p_4K_4 \cup \cdots \cup p_kK_k f(G) = a < \frac{2n}{3}$ and $\varepsilon(G) = \mathbf{m}_n(a)$, then $p_1 \le 1$ and $k \ge 4$.

6. If n = rq + t, $0 \le t < r$, then $T_{n,r}$ consists of t partite sets of cardinality $\lceil \frac{n}{r} \rceil$ and r-t partite sets of cardinality $\lfloor \frac{n}{r} \rfloor$.

7. $\varepsilon(T_{n,r}) = \binom{n-a}{2} + (r-1) \binom{a+1}{2}$, where $a = \lfloor \frac{n}{r} \rfloor$.

8. Let $t(n; r) = \varepsilon(T_{n,r})$. Then for a fixed *n*, by using elementary arithmetic, we get t(n, r-1) < t(n, r) for all $r, 2 \le r \le n$. In fact $t(n, r) - t(n, r-1) \ge \binom{a+1}{2}$, where $a = \lfloor \frac{n}{r} \rfloor$.

Let $\overline{t}(n, r) = {n \choose 2} - \varepsilon(T_{n,r})$. Summarizing the results, we have the following theorems.

Theorem 3.38 Let n and a be integers with $2 \le a \le n - 1$. Then

1. $\mathbf{m}_n(n) = 0$,

2. $\mathbf{m}_n(n-1) = 3$ if $n \ge 3$ and $G = (n-3)K_1 \cup K_3$ is the only graph of order n satisfying f(G) = n-1 and $\varepsilon(G) = 3$,

3. $\mathbf{m}_n(n-i) = 3i \text{ if } 1 \leq i \leq \lceil \frac{n}{2} \rceil$,

4. Suppose $4 \le a < \frac{2n}{3}$. Then $\mathbf{m}_n(a) = \overline{t}(n, q)$ if a = 2q, and $\mathbf{m}_n(a) = \overline{t}(n-1, q)$ if a = 2q+1, for some integer q, and

5.
$$\mathbf{m}_n(3) = \binom{n-1}{2}$$
 if $n \ge 3$, and $\mathbf{m}_n(2) = \binom{n}{2}$ if $n \ge 2$.

Theorem 3.39 Let n and m be integers with $0 \le m \le {n \choose 2}$. Then

- 1. $\min(f; m, n) = \max(f; m, n) = n$ if and only if $m \in \{0, 1, 2\}$,
- 2. min(f; m, n) = max(f; m, n) = 2 if and only if $m = \binom{n}{2}$, and
- 3. for $3 \le a \le n-1$, min(f; m, n) = a if and only if $\mathbf{m}_n(a) \le \mathbf{m} < \mathbf{m}_n(a-1)$.

We now find the minimum number of edges of a connected graph order n having the forest number a. Let CG(n; f = a) be the set of all connected graphs of order n having the forest number a. For integers n and a, let

$$\mathbf{cm}_n(a) = \min \{ \varepsilon(G) : G \in \mathcal{CG}(n; f = a) \}.$$

Further, $\mathbf{cm}_n(n) = n - 1$, $\mathbf{cm}_n(2) = \binom{n}{2}$. We now find $\mathbf{cm}_n(a)$ for 2 < a < n.

Let $\mathcal{CG}^*(n; f = a) = \{G \in \mathcal{CG}(n; f = a) : G \text{ is obtained from } \lceil \frac{a}{2} \rceil$ disjoint cliques and $\lceil \frac{a}{2} \rceil - 1$ edgesg}. We have the following theorem.

Theorem 3.40 Let G be a connected graph of order n with f(G) = a. Then there exists a graph $H \in CG^*(n; f = a)$ such that $\varepsilon(H) \le \varepsilon(G)$.

By Theorem 3.40 we know that for a graph $G \in CG(n; f = a)$, there may be many such graphs $H \in CG^*(n; f = a)$. We now seek for such a graph H with minimum number of edges. By applying Turán Theorem once again, we have the following theorems.

Theorem 3.41 Let *n* and *a* be integers with $2 \le a \le n-1$. Then

1. $\mathbf{cm}_n(n) = n - 1$,

2. Suppose that $4 \le a \le n-1$. Then $\mathbf{cm}_n(a) = \overline{t}(n, q) + q - 1$ if a = 2q, and $\mathbf{cm}_n(a) = \overline{t}(n-1, q) + q$ if a = 2q + 1, for some integer q, and

3. $\mathbf{cm}_n(3) = \binom{n-1}{2} + 1$ if $n \ge 3$, and $\mathbf{cm}_n(2) = \binom{n}{2}$ if $n \ge 2$.

Theorem 3.42 Let n and m be integers with $n - 1 \le m \le {n \choose 2}$. Then

- 1. Min(f; m, n) = Max(f; m, n) = n if and only if m = n 1,
- 2. Min(f; m, n) = Max(f; m, n) = 2 if and only if $m = \binom{n}{2}$, and
- 3. for $3 \le a \le n-1$, Min(f; m, n) = a if and only if $\mathbf{cm}_n(a) \le m < \mathbf{cm}_n(a-1)$.

Problem 10. Several graph parameters have been proved to satisfy an intermediate value theorem over $\mathcal{G}(m, n)$ and $\mathcal{CG}(m, n)$ as stated in Theorem 2.15. Find $\min(\pi; m, n); \max(\pi; m, n)$, $\min(\pi; m, n)$ and $\max(\pi; m, n)$ where $\pi \in \{\alpha, \alpha' \gamma\}$.

Acknowledgment

The author would like to thank the Thailand Research Fund for providing him financial support to do research in Graph Theory for the past 10 years.

References

- Bondy, J. A., and Murty, U. S. R. 1976. Graph Theory with Applications. 1st Edition. The MacMillan Press. 264 p.
- 2. Harary, F. Mokken, R. J., and Plantholt, M. 1983. Interpolation Theorems for Diameters of Spanning Trees. IEEE Trans. *Circuits and Systems* 30(7): 429-432.
- Eggleton, R. B., and Holton, D. A. 1979. Graphic Sequences, Combinatorial Mathematics, VI (Proceedings of the Sixth Australian Conference. University of New England, Armidale. New England. Armidale. 1978). *Lecture Notes in Mathematics* 748: 1-10.

- 4. Taylor, R. 1981. Constrained Switchings in Graphs. Combinatorial Mathematics, VIII (Geelong, 1980). *Lecture Notes in Mathematics* 884: 314-336.
- 5. Taylor, R. 1982. Switchings Constrained to 2-Connectivity in Simple Graphs. SIAM Journal on Discrete Mathematics 3(1): 114-121.
- Erdös, P., and Gallai, T. 1964. Solution of a Problem of Dirac, Theory of Graphs and its Applications: Proceedings of the Symposium, Smolenice, June 1963. Publishing House of the Czechoslavian Academy of Science, Prague: 167-168.
- 7. Caccetta, L., and Pullman, N. J. 1990. Regular Graphs with Prescribed Chromatic Number. *Journal of Graph Theory* 14: 65-71.
- Punnim, N. 2002. Degree Sequences and Chromatic Number of Graphs. Graphs and Combinatorics 18(3): 597-603.
- Punnim, N. 2002. The Clique Number of Regular Graphs. Graphs and Combinatorics 18(4): 781-785.
- Punnim, N. 2004. The Matching Number of Regular Graphs. *Thai Journal of Mathematics* 2: 133-140.
- Gallai, T. 1959. Über extreme Punkt-und Kantenmenger. Annales Universitatis Scientarium Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica 2: 133-138.
- 12. Punnim, N. 2003. On Maximum Induced Forests in Graphs. Southeast Asian Bulletin of Mathematics 27: 667-673.
- 13. Punnim, N. 2004. Interpolation Theorems on Graph Parameters. *Southeast Asian Bulletin* of Mathematics 28: 533-538.
- 14. Punnim, N. 2007. Interpolation Theorems in Jump Graphs. *The Australasian Journal of Combinatorics* 39: 103-114.
- 15. Brooks, R. L. 1941. On Colouring the Nodes of a Network. *Mathematical Proceedings of the Cambridge Philosophical Society* 37: 194-197.
- 16. Punnim, N. 2001. On F(j)-graphs and their applications. *The Journal of Combinatorial Mathematics and Combinatorial Computing* 38: 65-72.
- 17. Punnim, N. 2003. Forests in Random Graphs. *Southeast Asian Bulletin of Mathematics* 27: 333-339.
- Punnim, N. 2005. Decycling Regular Graphs. *The Australasian Journal of Combinatorics* 32: 147-162.
- Punnim, N. 2006. Decycling Connected Regular Graphs. The Australasian Journal of Combinatorics 35: 155-169.

- 20. West, D. B. 2001. Introduction to Graph Theory. 2nd Edition. U.S.A. Prentice Hall.
- 21. Chantasartrassmee, A., and Punnim, N. 2008. Forest in Biquartic Graphs. *Contributions in General Algebra II (ICDMA)*: 71-77.
- 22. Pike, D. A. 2003. Decycling Hypercubes. Graphs and Combinatorics 19: 547-550.
- 23. Tutte, W. T. 1947. The Factorization of Linear Graphs. Journal of the London Mathematical Society 22: 107-111.
- 24. Wallis, W. D. 1981. The Smallest Regular Graphs without One-Factors. *Ars Combinatoria*11: 295-300.
- 25. Mantel, W. 1907. Problem 28, Solution by Gouwentak, H., Mantel, W., Teixeira de Mattes, J., Schuh, F., and Wythoff, W. A. *Wiskundige Opgaven* 10: 60-61.
- 26. Turán, P. 1941. Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapook 48: 436-452.
- 27. Chantasartrassmee, A., and Punnim, N. 2008. The Forest Number in (n,m)-Graphs. *Lecture Notes in Computer Science (LNCS)* 4535: 33-40.