ทความรับเชิญ

An Intermediate Value Theorem for Graph Parameters

Narong Punnim*

ABSTRACT

Let G be the class of all graphs and $\mathcal{J} \subseteq \mathcal{G}$. A graph parameter π is said to satisfy an *intermediate value theorem over a class of graphs* \mathcal{J} if $G, H \in \mathcal{J}$ with $\pi(G) < \pi(H)$, then for every integer k with $\pi(G) \le k \le \pi(H)$ there is a graph $K \in \mathcal{J}$ such that $\pi(K) = k$. If a graph parameter π satisfies an intermediate value theorem over \mathcal{J} , then we write $(\pi, \mathcal{J}) \in \text{IVT}$. Thus if $(\pi, \mathcal{J}) \in \text{IVT}$, then $\{\pi(G) : G \in \mathcal{J}\}\$ is uniquely determined by min $(\pi, \mathcal{J}) : \text{min}\{\pi(G) : G \in \mathcal{J}\}\$ and max(π , \mathcal{J}) : = max{ π (*G*) : *G* $\in \mathcal{J}$ }. The problem of finding min(π , \mathcal{J}) and max(π , \mathcal{J}) is called the *extremal problem in graph theory.* We will discuss our results in this direction. Some open problems are also reviewed.

AMS Subject Classification 2010: 05C07, 05C35

Keywords: intermediate value theorem, extremal problem, graph parameter

Professor, Department of Mathematics, Faculty of Sciene, Srinakharinwirot University

^{*}Corresponding author, email: narong@swu.ac.th

1. Introduction

Only finite simple graphs are considered in this paper. For the most part, our notation and terminology follows that of Bondy and Murty [1].

Let $\mathcal I$ be a class of non-isomorphic graphs. A *graph transformation on* $\mathcal I$ is a subset of $\mathcal{J} \times \mathcal{J}$. Let ρ be a graph transformation on \mathcal{J} . We can define the *ρ-graph* having \mathcal{J} as its vertex set and there is a directed edge from *G* to *H* if and only if $(G, H) \in \rho$. If ρ is symmetric, it yields an undirected graph and otherwise a directed graph.

Harary [2] used a graph transformation called a *fundamental exchange* or an *edge exchange* as follows: Let *G* be a connected graph of order $n \geq 3$. The *tree graph*, **T**(*G*), of *G* is defined by specifying *V* (**T**(*G*)) as the set of all spanning trees of *G*, and two vertices T_1 ; $T_2 \in$ *V* (**T**(*G*)) are adjacent in **T**(*G*) if and only if T_1 and T_2 have exactly $n - 2$ edges in common. This is an example of an undirected ρ -graph. It was proved by Harary [2] that the tree graph $T(G)$ is connected.

A non-increasing sequence $\mathbf{d} = (d_1, d_2, ..., d_n)$ of non-negative integers is a *graphic degree sequence* if it is a degree sequence of some graph *G*. In this case, *G* is called a *realization* of **d**. A degree sequence of an *r*-regular graph of order *n* is denoted by *rn*.

Let *G* be a graph. For the distinct vertices *a, b, c,* and *d* in *V* (*G*) such that *ab* and *cd* are edges in *G* while *ac* and *bd* are not edges in *G*. Define $G^{\sigma(a,b,c,d)}$, simply written G^{σ} , to be the graph obtained from *G* by deleting the edges *ab* and *cd* and adding the edges *ac* and *bd.* The operation $\sigma(a,b,c,d)$ is called a *switching operation*. For a graphic degree sequence **d**, let $\mathcal{R}(\mathbf{d})$ and $\mathcal{CR}(\mathbf{d})$ be the sets of non-isomorphic realizations and connected realizations of **d**, respectively. The $\Sigma(\mathbf{d})$ is defined as a relation on $\mathcal{R}(\mathbf{d})$ as $(G, H) \in \Sigma(\mathbf{d})$ if $G \not\cong H$ and there is a switching σ on *G* such that $H = G^{\sigma}$. Thus the $\Sigma(d)$ -graph is simple. The concept of $\Sigma(d)$ -graph was introduced and developed in a joint paper by Eggleton and Holton [3]. It provides a structured way to examine all the graphs which "realize" a given degree sequence. The $\Sigma(d)$ -graph and the subgraph induced by $\mathcal{CR}(d)$ are connected as a consequence of Taylor [4, 5]. For positive integers *m* and *n* with $0 \le m \le {n \choose 2}$, let $\mathcal{G}(m, n)$ and $\mathcal{CG}(m, n)$ be the sets of all non-isomorphic graphs and the set of connected graphs of order *n* and size *m*, respectively. Let *G* ∈ $G(m, n)$ with $e \in E(G)$ and $f \notin E(G)$. Define $G^{t(e,f)}$ to be a graph with $V(G^{t(e,f)}) = V(G)$ and $E(G^{t(e,f)}) = E(G - e + f)$. A transformation $t(e, f)$ is called an *edge* jump. Now let $\mathcal{T}(m, n)$ be a relation on $G(m, n)$ defined by $(G, H) \in \mathcal{T}(m, n)$ if $G \not\equiv H$ and H can be obtained from G by an edge jump. Since $\mathcal{T}(m, n)$ is symmetric, it follows that the $\mathcal{T}(m, n)$ -graph is simple.

2. An intermediate value theorem

Let $\mathcal G$ be the class of all graphs. A graph parameter π is said to satisfy an *intermediate value theorem over a class of graphs* \mathcal{J} if $G, H \in \mathcal{J}$ with $\pi(G) < \pi(H)$, then for every integer *k* with $\pi(G) \le k \le \pi(H)$ there is a graph $K \in \mathcal{J}$ such that $\pi(K) = k$. If a graph parameter π satisfies an intermediate value theorem over \mathcal{J} , then we write $(\pi, \mathcal{J}) \in IVT$. Thus if $(\pi, \mathcal{J}) \in IVT$, then $\{\pi(G) : G \in \mathcal{J}\}\$ is uniquely determined by

 $min(\pi, \mathcal{J})$: = $min{\pi(G) : G \in \mathcal{J}}$ and $max(\pi, \mathcal{J})$: = $max{\pi(G) : G \in J}$.

In 1964, Erdös and Gallai [6] proved that any regular graph on *n* vertices has chromatic number $k \leq \frac{3n}{5}$ unless the graph is complete. Commenting on their result in a personal communication, Erdös wrote to Pullman "probably such a graph exists for every $k \leq \frac{3n}{5}$, except possibly for trivial exceptional cases."

Caccetta and Pullman [7] confirmed and strengthened Erdös' conjecture by showing that if $k > 1$, then for every $n \ge \frac{5k}{3}$, there exists a connected, regular, *k*-chromatic graph of order *n*. This is an example an intermediate value theorem of χ over the class of all connected regular graphs of order *n*.

2.1 The $\Sigma(d)$ **-graphs**

We will review in this subsection an intermediate value theorem on various graph parameters over $\mathcal{R}(\mathbf{d})$ and $\mathcal{CR}(\mathbf{d})$. We first prove a general result as follows:

Theorem 2.1 *Let* $\mathcal{J} \subseteq \mathcal{R}(\mathbf{d})$ *and the subgraph of* $\Sigma(\mathbf{d})$ *-graph induced by J be connected. Let* ^π *be a graph parameter. For any graph G of degree sequence* **d** *and any switching* σ, $if|\pi(G) - \pi(G^{\sigma})| \leq 1$, *then* $(\pi, \mathcal{J}) \in \text{IVT}$.

Proof. Let *H*, $K \in \mathcal{J}$ such that $\pi(H) = \min{\pi(G) : G \in \mathcal{J}}$ and $\pi(K) = \max{\pi(G) : G \in \mathcal{J}}$. Since the subgraph of $\Sigma(d)$ -graph induced by $\mathcal J$ is connected, there exists a path *P : H =* $G_1, G_2,...,G_t = K$ in \mathcal{J} . Thus there exists a sequence $\sigma_1, \sigma_2,...,\sigma_{t-1}$ such that $G_{i+1} = G_i^{\sigma_i}$. Since $|\pi(G_i) - \pi(G_{i+1})| = |\pi(G_i) - \pi(G_i^{\sigma_i})| \le 1$, it follows that $\{\pi(G_i) : i = 1, 2, ..., t\} = \{k \in \mathbb{Z} : \pi(H) \le k \}$ $k \leq \pi(K)$. Thus $(\pi, \mathcal{J}) \in \text{IVT}$.

The following result can be obtained as consequences of Taylor [4, 5].

Corollary 2.2 *Let* π *be a graph parameter. For a graph G of degree sequence* **d** and *a switching* σ , *if* $|\pi(G) - \pi(G^{\sigma})| \leq 1$, then $(\pi, \mathcal{R}(\mathbf{d})) \in \text{IVT}$ *and* $(\pi, \mathcal{CR}(\mathbf{d})) \in \text{IVT}$.

We will now review an intermediate value theorem on several graph parameters over $\mathcal{R}(\mathbf{d})$ and $\mathcal{CR}(\mathbf{d})$. Here we use $\omega(G)$ and $\alpha(G)$ for the clique number and independent number of a graph *G*, respectively.

We proved in [8] and [9] the following result.

Theorem 2.3 *Let G be a graph and* σ *be a switching on G. If* $\pi \in \{ \chi, \omega \}$, *then* $|\pi(G) - \pi(G^{\sigma})| \leq 1$. Note that $\alpha(G) = \omega(\overline{G})$ for any graph *G* and $\overline{G}^{\sigma(a,b,c,d)} = \overline{G^{\sigma(a,b,c,d)}}$. Thus we have the following corollary.

Corollary 2.4 *Let G be a graph and* σ *be a switching on G. Then* $|\alpha(G) - \alpha(G^{\sigma})| \leq 1$. For the matching number $\alpha'(G)$ of a graph *G* we obtained in [10] the following result.

Theorem 2.5 *If* σ *is a switching on G, then* $|\alpha'(G) - \alpha'(G^{\sigma})| \leq 1$.

The following results were obtained by Gallai [11] showing a relationship between the independence and covering number. Here we use $\beta(G)$ and $\beta'(G)$ for the covering and edge covering number of a graph *G*, respectively.

Theorem 2.6 *For a graph G of order n,* $\alpha(G) + \beta(G) = n$.

Theorem 2.7 *For a graph G of order n and* $\delta \geq 1$ *.* $\alpha'(G) + \beta'(G) = n$. As a consequence we obtain the following result.

Theorem 2.8 *Let G be a graph,* $\delta(G) \geq 1$ *and* σ *be a switching on G. If* $\pi \in \{\beta, \beta'\},$ *then* $|\pi(G)|$ $-\pi(G^{\sigma}) \leq 1.$

Let G be a graph and $F \subseteq V(G)$. Then *F* is called an *induced forest* of *G* if *G*[*F*] contains no cycle. For a graph G , we define, $f(G)$ as:

 $f(G)$: = max $\{|F| : F$ is an induced forest in G .

The graph parameter f is called the *forest number*. The problem of determining the minimum number of vertices whose removal eliminates all cycles in a graph *G* is known as the *decycling number* of *G*, and is denoted by $\phi(G)$: Thus for a graph *G* of order *n*, $\phi(G) + f(G)$ $= n$. We proved in [12] the following results on f and ϕ .

Theorem 2.9 If S is any subset of vertices of G such that $G[S]$ is a forest, and σ is any *switching on G, then G*^σ [*S*] *contains at most one cycle.*

Proof. Let $S \subseteq V(G)$ and $G[S]$ contains no cycle. Let *a, b, c, d* ∈ $V(G)$ with *ab, cd* ∈ $E(G)$ and *ac*, *bd* ∉ *E*(*G*). Since *G*[*S*] contains no cycle, it follows that *G*[*S*] + *ac* and *G*[*S*] + *bd* contains at most one cycle. Thus if $|S \cap \{a, b, c, d\}| \leq 3$, then $G^{\sigma}[S]$ contains at most one cycle. Now suppose that $\{a, b, c, d\} \subset S$. Since $G[S]$ is a forest, for any two vertices $u, v \in S$ there is

at most one (u, v) -path in $G[S]$. In particular, if there is an (a, c) -path in $G[S]$, then there is no (*b, d*)-path in *G*[*S*]. Thus $G^{\sigma}[S]$ contains at most one cycle, where $\sigma = \sigma(a, b; c, d)$.

The following corollary can be obtained as a consequence of above theorem.

Corollary 2.10 *Let G be a graph and* σ *be a switching on G. If* $\pi \in \{f, \phi\}$, then $|\pi(G) - \pi(G^{\sigma})| \leq 1$.

A *dominating set* of a graph $G = (V, E)$ is a subset D of V such that each vertex of $V - D$ is adjacent to at least one vertex of *D*. The *domination number* $\gamma(G)$ of a graph *G* is the cardinality of a minimal dominating set with the least number of elements. We proved in [13] the following results.

Theorem 2.11 *If G is a graph with* $\gamma(G) = \gamma$ *and* σ *is a switching on G, then* $\gamma(G^{\sigma}) \leq \gamma + 1$.

Proof. Let *D* be a minimum dominating set of *G*. Let *a, b, c, d* ∈ $V(G)$ with *ab, cd* ∈ $E(G)$ and *ac*, $bd \notin E(G)$. Put $\sigma = \sigma(a, b; c, d)$. If $\{a, b, c, d\} \cap D = \emptyset$ or $\{a, b, c, d\} \subseteq D$, then *D* is a dominating set of G^{σ} . If *a, b* \in *D* or *c, d* \in *D,* then *D* is a dominating set of G^{σ} . Finally if $a \in D$ or $c \in D$, then $D \cup \{b\}$ or $D \cup \{d\}$ is a respective dominating set of G^{σ} . Thus $\gamma(G^{\sigma}) \leq \gamma + 1$.

By the fact that a switching is symmetric we obtain the following result.

Corollary 2.12 *If* σ *is a switching on G, then* $|\gamma(G) - \gamma(G^{\sigma})| \leq 1$.

Combining the results in this subsection we can conclude the following theorem.

Theorem 2.13 *Let* $\mathbf{d} = (d_1, d_2, \ldots, d_n), d_1 \geq d_2 \geq \ldots \geq d_n \geq 1$ *be a graphic degree sequence. Then* $(\pi, \mathcal{R}(\mathbf{d})) \in \text{IVT}$ *and* $(\pi, \mathcal{CR}(\mathbf{d})) \in \text{IVT}$, *where* $\pi \in \{\chi, \omega, \mathsf{f}, \phi, \alpha, \alpha', \beta, \beta', \gamma\}.$

2.2 The $T(m, n)$ -graphs

We recently proved in [14] that the $\mathcal{T}(m, n)$ -graph and the subgraph of the $\mathcal{T}(m, n)$ graph induced by $\mathcal{CG}(m, n)$ are connected. We also obtained in the same paper the following results.

Theorem 2.14 *Let* $\pi \in \{ \chi, \omega, \mathsf{f}, \phi, \alpha, \alpha', \beta, \beta', \gamma \}$ *Then for any* $G \in \mathcal{G}(m, n)$ *and an edge* $\lim_{t \to \infty} t(e, f)$ *on G*, $|\pi(G) - \pi(G^{t(e,f)})| \leq 1$.

Theorem 2.15 *Let* $\pi \in \{ \chi, \omega, \text{ f}, \phi, \alpha, \alpha', \beta, \beta', \gamma \}$ and $\mathcal{J} \in \{ G(m, n), C\mathcal{G}(m, n) \}$. *Then* $(\pi, \mathcal{J}) \in \text{IVT}.$

3. The extremal problems

An *extremal problem* asks for minimum and maximum values of a function $\pi : \mathcal{J} \implies \mathbb{Z}$. In our context we consider the problem of determining $\min(\pi, \mathcal{J})$ and $\max(\pi, \mathcal{J})$, where π is a graph parameter and $\mathcal I$ is a class of graphs. We emphasize on the graph parameters as stated in Section 2 and the classes of graphs $\mathcal{J} \in \{ \mathcal{R}(r^n), \mathcal{CR}(r^n), \mathcal{G}(m, n), \mathcal{CG}(m, n) \}$. Therefore we use the following notation.

> $\min(\pi, r^n) = \min\{\pi(G) : G \in \mathcal{R}(r^n)\},\$ $\max(\pi, r^n) = \max{\pi(G) : G \in \mathcal{R}(r^n)},$ $\text{Min}(\pi, r^n) = \min{\pi(G) : G \in \mathcal{CR}(r^n)},$ $\text{Max}(\pi, r^n) = \max{\pi(G) : G \in \mathcal{CR}(r^n)}$ $min(\pi; m, n) = min{\pi(G) : G \in \mathcal{G}(m, n)},$ $max(\pi; m, n) = max{\pi(G) : G \in \mathcal{G}(m, n)},$ $Min(\pi; m, n) = min{\pi(G) : G \in \mathcal{CG}(m, n)}$, and $\text{Max}(\pi; m, n) = \max{\pi(G) : G \in \mathcal{CG}(m, n)}.$

3.1 $\mathcal{R}(r^n)$ and $\mathcal{CR}(r^n)$

A classical result of Erdös and Gallai [6] gives a motivation to the extremal problem.

Theorem 3.1 *An r-regular graph G of order n > r* + 1 *has chromatic number* $k \leq \frac{3n}{5}$, *with* equality if and only if the complementary graph \overline{G} of G is the union of disjoint 5-cycles. *equality if and only if the complementary graph G of G is the union of disjoint* 5-*cycles*.

We obtained in [8] the extremal values of χ .

Theorem 3.2 *If* $r \geq 2$ *and* $n \geq 2r$ *, then*

$$
\min(\chi, r^n) = \begin{cases} 2 \text{ if } n \text{ is even,} \\ 3 \text{ if } n \text{ is odd.} \end{cases}
$$

Theorem 3.3 *If* $r \geq 2$, then

1. min(*χ*, *r*^{*r*+1) = max(*χ*, *r*^{*r*+1) = *r* + 1, *and*}} 2. min(χ , r^{r+2}) = max(χ , r^{r+2}) = (r + 2)/2.

Theorem 3.4 *For any r* \geq 4 *and odd integers such that* $3 \leq s \leq r$, *let q and t be integers satisfying* $r + s = sq + t$, $0 \le t < s$. Then

$$
\min(\chi, r^{r+s}) = \begin{cases} q & \text{if } t = 0, \\ q+1 & \text{if } 1 \le t \le s-2, \\ q+2 & \text{if } t = s-1. \end{cases}
$$

Theorem 3.5 *For any even integer r* \geq 6 *and any even number s such that* $4 \leq s \leq r$, *let q and t be integers satisfying* $r + s = sq + t$, $0 \le t < s$. *Then*

$$
\min(\chi, r^{r+s}) = \begin{cases} q & \text{if } t = 0, \\ q+1 & \text{if } t \ge 2. \end{cases}
$$

By using Brooks' theorem [15] and some graph construction we obtained the following theorems in [8].

```
Theorem 3.6 Let r \geq 2. Then
```
1.
$$
\max(\chi, r^{2r}) = r
$$
,
\n2. $\max(\chi, r^{2r+1}) = \begin{cases} 3 & \text{if } r = 2, \\ r & \text{if } r \ge 4, \end{cases}$
\n3. $\max(\chi, r^n) = r + 1 \text{ for } n \ge 2r + 2$.

Theorem 3.7 *For any r and s such that* $3 \leq s \leq r - 1$ *, we have*

1. max(*χ*, *r*^{*r*+*s*}) \ge (*r* + *s*)/2 *if r* + *s is even, and*

2. max(χ , r^{r+s}) $\geq (r + s - 1)/2$ *if* $r + s$ *is odd.*

The exact values of max(χ , r^n) are not easy to obtain if $r + 3 \le n \le 2r - 1$. Result of Theorem 3.1 gives an upper bound for χ in the class of connected regular graphs of order *n* but the bound can be very far from the actual value depending on the regularity. We were able to improve the bound in [16] by introducing the notion of $F(j)$ -graph.

Let j be a positive integer. An $F(j)$ -graph is a $(j - 1)$ -regular graph *G* of minimum Let *j* be a positive integer. An $F(j)$ -graph is a $(j - 1)$ -regular graph *G* of minimum order $f(j)$ with the property that $\chi(\overline{G}) > f(j)/2$. It is easy to see that $F(3)$ -graph is C_5 and $f(3) = 5$. We found $F(j)$ -graphs for all odd integers j as stated in the following theorems.

Theorem 3.8 *For odd integer* $j \ge 3$, *we have* $f(j) = \frac{5}{2}(j - 1)$ *if* $j = 3 \pmod{4}$ *and* $f(j) =$ $1 + \frac{5}{2}(j - 1)$ *if* $j \equiv 1 \pmod{4}$.

Theorem 3.9 [16] *Any r-regular graph of order n with n – r = j odd and* $j \ge 3$ *has chromatic number at most* $\frac{f(j) + 1}{2f(j)} \cdot n$, *and this bound is achieved precisely for those graphs with complement equal to a disjoint union of* $F(j)$ -graphs.

Problem 1. Find an $F(j)$ -graph for even integer $j \geq 4$.

Problem 2. Find max (χ, r^{r+j}) if j is even and $4 \leq j \leq r - 2$.

The extremal problem for ω has been completely answered in [9]. Since K_{r+1} is the only *r*-regular graph of order $r + 1$, it follows that min(ω , r^{r+1}) = $r + 1$. Given positive integers *n* and *k* with $k \le n$, there exists a connected graph *G* of order *n* with $\omega(G) = k$. As we shall see in the next theorem that there is no regular graph *G* of order *n* having $\omega(G)$ strictly lies between $\frac{n}{2}$ and *n*.

Theorem 3.10 *Let* $d = r^n$ *be a graphic degree sequence with* $r+2 \le n \le 2r+1$ *. Then* $max(\omega, r^n) = \lfloor \frac{n}{2} \rfloor$.

The idea of obtaining min(ω , r^n) is similar to what we have done for min(χ , r^n) and we have $\min(\omega, r^n) = \min(\chi, r^n)$ in all situations.

Problem 3. We have obtained min (ω, r^n) and max (ω, r^n) in all situations. It is interesting to find Min (ω, r^n) and Max (ω, r^n) .

Problem 4. By using the relation $\alpha(G) = \omega(G)$, can we obtain min(α , r^n), max(α , r^n), Min(α , r^n) and Max (α, r^n) ?

For the graph parameter f, we found in [17] a lower bound of min(f , d) by using the *probabilistic method.* In particular, we proved the following theorem.

Theorem 3.11 *Let G be a graph having degree sequence* $\mathbf{d} = (d_1, d_2, \ldots, d_n), d_1 \geq d_2 \geq \ldots \geq d_n$ d_n ≥ 1. *Then*

$$
f(G) \ge 2 \sum_{i=1}^{n} \frac{1}{d_i + 1}
$$
.

The value of min(f, r^n) is not easy to obtain if we work on *r*-regular graphs. It is reasonable to extend the class of *r*-regular graphs of order *n* to a larger class $G_{\Lambda}(n)$. Let *n* and Δ be positive integers with $n > \Delta$. Let $\mathcal{G}_{\Lambda}(n)$ be the class of all graphs *G* of order *n* and $\Delta(G) = \Delta$. Let **d** = $(d_1, d_2,...,d_n)$ be a sequence of non-negative integers. Define **d** a degree sequence $(\overline{d_1}, \overline{d_2},...,\overline{d_n})$, where $\overline{d_i} = n - d_i - 1$, for $i = 1, 2,...,n$. It is clear that **d** is graphic if and sequence $(\overline{d_1}, \overline{d_2}, \ldots, \overline{d_n})$, where $\overline{d_i} = n - d_i - 1$, for $i = 1, 2, \ldots, n$. It is clear that **d** is graphic if and only if $\overline{\mathbf{d}}$ is. We proved in [17] the following results.

Theorem 3.12 *Let* $d = (d_1, d_2, ..., d_n), d_1 \ge d_2 \ge ... \ge d_n \ge 1$ *be a graphic degree sequence and* $d_1 + 1 \le n \le 2d_1 + 1$. *Then*

1. min(f, **d**) = 2 *if and only if* $d_1 = d_2 = d_3 = \cdots = d_n$ *and* $n = d_1 + 1$ *and*

2. *if* **d** *does not have a complete graph as its realization, then* min(f , **d**) = 3 *if and only if* **d** › *has a disjoint union of stars as its realization.*

Theorem 3.13 *Let* $n = (∆ + 1)q + t$, 0 ≤ $t ≤ ∆$. *Then* 1. min(f, $G_{\Lambda}(n) = 2q$, *if* $t = 0$,

- 2. min(f, $G_{\lambda}(n) = 2q + 1$, *if* $t = 1$, *and*
- 3. min(f, $G_{\Lambda}(n)$) = 2*q* + 2, *if* 2 ≤ *t* ≤ Δ .

With some modification of Theorem 3.13 in the class of *r*-regular graphs of order *n* and some properties of $F(\gamma)$ -graph, we found min(f, r^n) in all situations as stated in the following theorems in [18].

Theorem 3.14 *For* $r \ge 3$ *, and* $n = r + j$, $1 \le j \le r + 1$

1. min(f, r^n) = 2, *if and only if* $n = r + 1$, 2. min(f, r^n) = 3, *if and only if* $n = r + 2$, 3. min(f, r^n) = 4, *for all even integers n, r* + 3 \leq *n,* 4. min(f, r^n) = 4, *for all odd integers n, r* + 3 ≤ *n and n* ≥ $f(j)$, 5. min(f, r^n) = 5, for all odd integers n, $r + 3 \le n$ and $n < f(j)$,

where $f(j) = \frac{5}{2}$ ($j-1$) *if* $j \equiv 3 \pmod{4}$, *and* $f(j) = 1 + \frac{5}{2}$ ($j-1$) *if* $j \equiv 1 \pmod{4}$.

Theorem 3.15 *For n* ≥ 2*r* + 2 *and r* ≥ 3, *write n* = $(r + 1)q + t$, $q ≥ 2$ *and* $0 ≤ t ≤ r$. *Then*

- 1. $\min(f, r^n) = 2q$ *if* $t = 0$,
- 2. min(f, r^n) = 2*q* + 1 *if t* = 1,
- 3. min(f, r^n) = 2*q* + 2 *if* 2 ≤ *t* ≤ *r* = 1,
- 4. $\min(f, r^n) = 2q + 3$ *if* $t = r$.

We obtained in [12] the values of max(f, r^n), for all *r* and *n* as stated in the following theorems.

Theorem 3.16

$$
\max(\mathbf{f}, r^n) = \begin{cases} n - r + 1 & \text{if } r + 1 \le n \le 2r - 1, \\ \lfloor \frac{nr - 2}{2(r - 1)} \rfloor & \text{if } n \ge 2r. \end{cases}
$$

Note that if $r \ge 2$, then max(f, r^n) = Max(f, r^n). The investigation of Min(f, r^n) was considered in [19] and we settled almost all cases as stated in the following results.

Theorem 3.17 *Let n be an even integer* $n \geq 12$ *. Then*

Min(f, 3ⁿ) =
$$
\begin{cases} \frac{5}{8}n - \frac{1}{4} & \text{if } n \equiv 2 \pmod{8}, \\ \frac{5}{8}n & \text{otherwise.} \end{cases}
$$

Theorem 3.18 *Let n and r be integers with* $r \geq 4$ *. Then*

$$
Min(f, r^n) \ge \left\lceil \frac{2n}{r} \right\rceil.
$$

Let $n = rq + t$, $0 \le t \le r - 1$, $r \ge 4$. Then Min(f, r^n) $\ge 2q + \lceil \frac{2t}{r} \rceil$. By construction we have the following results.

Min(f, rⁿ) =
$$
\begin{cases} 2q & \text{if } t = 0, \\ 2q + 1 & \text{if } t = 1, 2, \\ 2q + 2 & \text{if } t > \frac{r}{2}. \end{cases}
$$

Problem 5. Find Min(f, r^n) if $3 \le t \le \frac{r}{2}$.

Let $\mathcal{B}(r^{2n})$ be the class of *r*-regular bipartite graphs of order 2*n*. It was shown in [20], page 53 that the subgraph of the $\Sigma(r^{2n})$ -graph induced by $\mathcal{B}(r^{2n})$ is connected. Therefore $(f, \mathcal{B}(r^{2n})) \in \text{IVT}$. We write min($f, \mathcal{B}(r^{2n})$) for min{ $f(G) : G \in \mathcal{B}(r^{2n})$ } and max($f, \mathcal{B}(r^{2n})$) for max ${f(G) : G \in \mathcal{B}(r^{2n})}.$ Thus $f(\mathcal{B}(r^{2n}))$ is uniquely determined by min(f, $\mathcal{B}(r^{2n})$), and max(f, $B(r^{2n})$). Evidently, min(f, $B(r^{2n})$) = max(f, $B(r^{2n})$) = 2*n* if $r \in \{0, 1\}$, max(f, $B(2^{2n})$) = $2n - 1$ and min(f, $B(2^{2n}) = \left[\frac{3n}{2}\right]$. We proved in [21] the following theorems.

Theorem 3.19 If $r \ge 2$, then max(f, $\mathcal{B}(r^{2n}) = \max(f, r^{2n}) = \frac{[nr-1]}{r-1}$.

Theorem 3.20 min(f, $\mathcal{B}(3^{2n})$) = n + $\lceil \frac{n}{4} \rceil$.

Theorem 3.21 min(f, $\mathcal{B}(4^{2n})$) = $n + \lceil \frac{n}{7} \rceil$.

The problem of determining min(f, $\mathcal{B}(r^{2n})$) is not easy if $r \geq 5$.

Problem 6. Find min(f, $\mathcal{B}(r^{2n})$) if $r \ge 5$.

Problem 7. Let $\mathcal{CB}(r^{2n})$ be the class of connected *r*-regular bipartite graphs of order 2^n and $r \ge 2$. It is clear that max(f, $CB(r^{2n})$) = max(f, $B(r^{2n})$). Find min(f, $CB(r^{2n})$).

Problem 8. The hypercube Q_n is a connected *n*-regular bipartite graph of order 2^n . The exact values of $f(Q_n)$ have been obtained when *n* is a power of 2. Details can be found in [22]. Find $f(Q_n)$ for other values of *n*.

In [10], we determined the values of min(α' , r^n) and max(α' , r^n) for all *r* and *n*. Since $\min(\alpha', 0^n) = \max(\alpha', 0^n) = 0$ and $\min(\alpha', 1^{2n}) = \max(\alpha', 1^{2n}) = n$, we can assume that $r \ge 2$ and $n \geq r + 1$.

An existence of an *r*-regular Hamiltonian graph of order *n* implies that $max(\alpha', r^n)$ = $\lfloor \frac{n}{2} \rfloor$. A component of a graph is *odd* or *even* according as it has odd or even number of vertices. We denote by $o(G)$ the number of odd components of *G*. Tutte [23] proved the following theorem.

Theorem 3.22 *The number of edges in a maximum matching of a graph G is* $\frac{1}{2}$ (|*V*(*G*)|*-d*), *where* $d = \max_{S \subset V(G)} \{o(G - S) - |S|\}.$

Let *F*(*r*, *d*) be the minimum order of an *r*-regular graph *G* with $\alpha'(G) = \frac{1}{2}(|V(G)| - d)$. It is clear that $|V(G)| \equiv d \pmod{2}$. Wallis [24] found $F(r, 2)$ for all $r \geq 3$. More precisely, he proved the following theorem.

Theorem 3.23 *Let G be an r-regular graph with no 1-factor and no odd component. Then*

$$
|V(G)| \ge \begin{cases} 3r + 7 & \text{if } r \text{ is odd, } r \ge 3, \\ 3r + 4 & \text{if } r \text{ is even, } r \ge 6, \\ 22 & \text{if } r = 4. \end{cases}
$$

Furthermore, no such graphs exist for r = 1 *or* 2.

If *G* is an *r*-regular graph with $\alpha'(G) = \frac{1}{2}(|V(G)| - d)$, then there exists a *k*-subset *K* of $V(G)$ such that $o(G - K) = k + d$. If $k = 0$, then *r* is even, *G* contains *d* odd components, and each component of *G* has order at least $r + 1$. Suppose that $k \ge 1$ and $G - K$ has an odd component with *p* vertices where $p \le r$. Thus the number of edges within the component is at most $\frac{1}{2}p(p-1)$. This means that the sum of degrees of these *p* vertices in $G - K$ is at most $p(p-1)$. But *G* is an *r*-regular graph, so the sum of degrees of these *p* vertices in *G* is *pr*. Hence the number of edges joining K to the component must be at least $pr - p(p - 1)$. For a fixed integer *r* and an integer *p* satisfying $1 \le p \le r$, the function $f(p) = pr - p(p - 1)$, $1 \le p \le r$ has minimum value $f(1) = f(r) = r$. So any odd component with *r* or less vertices is joined to *K* by *r* or more edges. Suppose that there are o_+ odd components of $G - K$ with more than r vertices and o_- odd components with less than or equal to *r* vertices. Thus

$$
o_+ + o_- = k + d \tag{1}
$$

$$
o_+ + ro_- \le kr. \tag{2}
$$

From these 2 relations, we have $o_+ \geq \left\lceil \frac{rd}{r-1} \right\rceil = d + \left\lceil \frac{d}{r-1} \right\rceil$ and $k \geq \left\lceil \frac{d}{r-1} \right\rceil$. We obtained the following results in [10].

Theorem 3.24 *Let r be an even integer,* $r \geq 2$ *. Then* $F(r, d) = d(r + 1)$ *.*

Corollary 3.25 *Let r be an even integer,* $r \geq 2$ *. If* $n = (r + 1)d + e$ *,* $0 \leq e \leq r$ *, then* $\min(\alpha', r^n) =$ $rac{dr}{2} + \left\lfloor \frac{1+e}{2} \right\rfloor$.

Suppose that *r* is odd and $r \geq 3$. Let *G* be an *r*-regular graph of order n such that α' $(G) = \frac{1}{2}$ $(n-d)$. Then d must be even. Put $d = 2q$. There exists a nonempty subset *K* of *V* (*G*) of cardinality *k* such that $o(G - K) = k + 2q$. By (1) and (2), we have

$$
n \ge k + (r+2)o_+ \ge \left\lceil \frac{2q}{r-1} \right\rceil + (r+2) + 2q + \left\lceil \frac{2q}{r-1} \right\rceil = \left\lceil \frac{2q}{r-1} \right\rceil (r+3) + 2q(r+2).
$$

Wallis [24] defined $G(x, y)$ to be a graph with $x+y$ vertices, x and y being of degree $x+y-3$ and $x+y-2$, respectively. Thus $G(x, y)$ exists if and only if *y* is even and $y \ge 2$. It is noted that for any graph $G(x, y)$, it has y vertices of degree *r* and *x* vertices of degree $r-1$. Let x_i , y_i , $i = 1, 2, \ldots, m$, be integers such that $G(x_i, y_i)$ exists for all $i = 1, 2, \ldots, m$. We then construct a graph

$$
G(x_1, y_1) * G(x_2, y_2) * ... * G(x_m, y_m)
$$

from disjoint copies of the graphs by inserting a new vertex, say *u*, by joining *u* to all vertices of $G(x_i, y_i)$ which have the smallest degree, for $i = 1, 2, \ldots, m$. With this notion we see that for an odd integer $r \ge 3$, $q = 1, 2, \ldots, \frac{r-1}{2}$ and for any odd positive integers a_i , $i = 1, 2, \ldots, 1 + 2q$ whose sum is *r*, it follows that

$$
G_q = G(a_1, \ r+2-a_1) \ast G(a_2, \ r+2-a_2) \ast ... \ast G(a_1+2q, \ r+2-a_1+2q)
$$

is an *r*-regular graph on $(r + 2)(1 + 2q) + 1$ vertices with $\alpha'(G_q) = \frac{1}{2}(|V(G_q)| - 2q)$. We have the following results.

Theorem 3.26 *For an odd integer* $r \geq 3$ *, then*

1.
$$
F(r, 2q) = (r + 2)(1 + 2q) + 1
$$
, for $q = 1, 2, ..., \frac{r-1}{2}$,
\n2. if $q = \frac{r-1}{2}s + t, 0 \le t \frac{r-1}{2}$, then $F(r, 2q) = sF(r, r - 1) + F(r, 2t)$, where $F(r, 0) = 0$.

Corollary 3.27 *Let r be an odd integer,* $r \geq 3$ *. If* $F(r, 2q) \leq n < F(r, 2(q + 1))$ *, then* $\min(\alpha', r^n)$ $=\frac{1}{2}(n-2q).$

Problem 9. It is clear that $(\alpha', \mathcal{CR}(r^n)) \in \text{IVT}$ and it is easy to see that $\text{Max}(\alpha', r^n) = \lfloor \frac{n}{2} \rfloor$. Find $Min(α', r^n)$.

3.2 $\mathcal{G}(m, n)$ and $\mathcal{CG}(m, n)$

We will discuss in this subsection the extremal problem for graph parameters over $\mathcal{G}(m, n)$ and *(m, n)*.

Mantel's theorem [25] provides the maximum number of edges that a 2-chromatic graph of order *n* can have. On the other hand the minimum number of edges in a 2-chromatic graph of order $n \geq 2$ is 1 and the minimum number of edges in a 2-chromatic connected graph of order $n \geq 2$ is $n-1$. Turán [26] extended the result of Mantel by introducing the *Turán graph*. This result of Turán is viewed as the origin of extremal graph theory. The *Turán graph* $T_{n,r}$ is the complete *r*-partite graph of order *n* whose partite sets differ in cardinality by at most 1.

Theorem 3.28 *Among the graphs of order n containing no complete subgraph of order* $r + 1$, $T_{n,r}$ has the maximum number of edges.

In order to apply Turán's theorem in our context, we would like to state the following facts.

1. If $n = rq + t$, $0 \le t < r$, then $T_{n,r}$ consists of *t* partite sets of cardinality $\lfloor \frac{n}{r} \rfloor$ and $r-t$ partite sets of cardinality $\lfloor \frac{n}{r} \rfloor$.

2. Let $G \in G(m, n)$. If $\omega(G) \leq r$, then $m \leq \varepsilon(T_{n,r})$.

3. $\varepsilon(T_{n,r}) = \binom{n-a}{2} + (r-1)\binom{a+1}{2}$, where $a = \lfloor \frac{n}{r} \rfloor$.

4. Let $t(n, r) = \varepsilon(T_{n,r})$. Then for a fixed *n*, we get $t(n, r-1) < t(n,r)$ for all $r, 2 \le$ $r \le n$. In fact $t(n, r) - t(n, r - 1) \ge {a+1 \choose 2}$, where $a = \lfloor \frac{n}{r} \rfloor$.

We obtained in [14] the following theorems.

Theorem 3.29 *Let m, n and k be positive integers with* $n \ge k \ge 3$ *and* $\binom{k}{2} \le m < \binom{k+1}{2}$. *Then* $max(\chi; m, n) = k$.

Theorem 3.30 *Let m, n and k* \geq 2 *be positive integers satisfying t(n, k-1) < m* \leq *t(n, k). Then* $\min(\chi; m, n) = k$.

We now conclude the following corollary.

Corollary 3.31 Let m, n and k be positive integers.

- *1. If* $n \ge k$ *and* $\binom{k}{2} \le m < \binom{k+1}{2}$, *then* $\max(\omega; m, n) = k$.
- *2.* If $t(n, k-1) < m \le t(n, k)$, then $\min(\omega; m, n) = k$.
- 3. *If* $t(n, k-1) < m \le t(n, k)$, then $Min(\chi; m, n) = k$.
- 4. *If* $k \ge 3$ *and* $t(n, k-1) < m \le t(n, k)$, then $Min(\omega; m, n) = k$.

Results on Max $(x; m, n)$ and Max $(\omega; m, n)$ can be obtained similarly as stated in the following theorems.

Theorem 3.32 *Let n, m and k be positive integers with* $n \ge k \ge 3$ *and* $\binom{k}{2} + n - k \le m$ $\binom{k+1}{2} + n - k - 1$ *. Then* **Max**(χ *; m, n) = k.*

Theorem 3.33 *Let n,m and k be positive integers with* $n \ge k \ge 3$ *and* $\binom{k}{2} + n - k \le m$ $\binom{k+1}{2} + n - k - 1$. Then **Max**(ω*; m, n)* = *k.*

Thus all extreme values of χ and ω over $\mathcal{G}(m, n)$ and $\mathcal{CG}(m, n)$ are obtained in all situations.

The extremal values of the graph parameter *f* over $G(m, n)$ and $CG(m, n)$ were obtained in [27].

Let *G* be a graph and *X*, *Y* be disjoint nonempty subsets of *V* (*G*). Denote by ε (*X*) the number of edges in $G[X]$ and $\varepsilon(X, Y)$ the number of edges in *G* connecting vertices in *X* to vertices in *Y*.

Let $G \in \mathcal{G}(m, n)$ and *F* be a maximum induced forest of *G*. Let $|F| = a$. Therefore $G - F$ has order $n - a$. An upper bound for m can be obtained by the following inequality.

 $m = \varepsilon(G - F) + \varepsilon(G - F, F) + \varepsilon(F) \leq {n-a \choose 2} + a(n - a) + (a - 1).$

Let $a = n - i$ for any $i \in \{1, 2, ..., n - 2\}$. Then $m \le (i + 1)n - \frac{i^2 + 3i + 2}{2}$ For an integer $i = 1, 2, \dots, n - 2$, let

$$
\mathbf{M}_n(n-i) \, : = \, (i+1)n \, - \, \frac{i^2 + 3i + 2}{2}
$$

It is clear that $M_n(n-i)$ is an integer. We showed in [27] that max(f ; *m*, *n*) = *n*-*i* if and only if $M_n(n-i+1) < m \le M_n(n-i)$ by constructing a graph $G \in \mathcal{G}(m, n)$ with $M_n(n-i+1) < m \le$ $M_n(n-i)$ and $f(G) = n-i$. Furthermore the graph *G* is connected. Therefore we have the following theorem.

Theorem 3.34 *Let n and m be integers satisfying* $0 < m \leq {n \choose 2}$. *The* max(*f; m, n*) = *n* - *i if and only if* $\mathbf{M}_n(n-i+1) < m \leq \mathbf{M}_n(n-i)$ *and* $\text{Max}(f; m, n) = n-i$ *if and only if* $m \geq n-1$ *and* $M_n(n-i+1) < m \le M_n(n-i)$.

In order to obtain the values of min(f ; m , n), we first find the minimum number of edges of a graph of order *n* having the forest number *a*. Let $G(n; f = a)$ be the set of graphs of order *n* having the forest number *a*. It is clear that $G(n; f = a) \neq \emptyset$ if and only if $2 \leq a \leq n$. For integers *n* and *a*, let

$$
\mathbf{m}_n(a) := \min\{\varepsilon(G) : G \in \mathcal{G}(n; f = a)\}:
$$

Thus $m_n(n) = 0$, $m_n(n-1) = 3$ and $m_n(2) = \binom{n}{2}$. It is easy to see that for a graph *G* of order $n \geq 2$, $f(G) = 2$ if and only if $G \cong K_n$. We now find $m_n(a)$ for $2 < a < n$. Theorem 3.12 gives a characterization of graphs having forest number 3. Thus $\mathbf{m}_n(3) = \binom{n}{2} - n + 1$, for all $n \ge 4$. We proved in [27] the following lemma.

Lemma 3.35 *If G is a graph of order n with* $\Delta(G) = \Delta$ and $f(G) = 2q + 1$ *for some integer q, then n* $\leq (\Delta + 1)q + 1$.

By Lemma 3.35, we have a lower bound for the maximum degree of a given graph in terms of its order and its forest number. In other words, if *G* is a graph of order *n*, then $\Delta(G) \ge \left\lceil \frac{2n}{f(G)} \right\rceil - 1$. In particular, if $f(G) = 2q$ for some integer *q*, then $\Delta(G) \ge \left\lceil \frac{n}{q} \right\rceil - 1$. By Lemma 3.35 the lower bound for $\Delta(G)$ can be improved if f(*G*) is odd. That is, if f(*G*) = 2*q*+1 for some integer *q*, then $n \leq (\Delta(G) + 1)q + 1$ which is equivalent to $\Delta(G) \geq \frac{[n-1]}{q} - 1$. We have the following corollary.

Corollary 3.36 *Let G be a graph of order n and q be a positive integer. If (G) =* 2*q, then* $\Delta(G) \geq \lceil \frac{n}{q} \rceil - 1$, and *if* $f(G) = 2q + 1$, then $\Delta(G) \geq \lceil \frac{n-1}{q} \rceil - 1$.

Let $\mathcal{G}^*(n; f = a) = \{G \in \mathcal{G}(n; f = a) : G \text{ is a union of } \lceil \frac{a}{2} \rceil \text{ cliquesgl. It is clear that }$ $\mathcal{G}^*(n; f = a) \subseteq \mathcal{G}(n; f = a)$. We have the following theorem.

Theorem 3.37 *Let G be a graph of order n with* $f(G) = a$ *. Then there exists a graph* $H \in \mathcal{G}^*(n; f = a)$ *such that* $\varepsilon(H) \leq \varepsilon(G)$ *.*

By Theorem 3.37, we know the structure of graphs of order *n* with prescribed the forest number. In general, for a graph $G \in \mathcal{G}(n; f = a)$, there may be many such graphs $H \in \mathcal{G}^*(n; f = a)$. We now seek for such a graph *H* with minimum number of edges.

By using the results of Mantel [25] and Turán [26] as mentioned in the previous subsection, we have the following results.

1. Let $G = p_1 K_1 \cup p_3 K_3 \cup p_4 K_4 \cup \cdots \cup p_k K_k$. Then the order of *G* is $p_1 + 3p_3 + 4p_4 +$...+*kp_k* and $f(G) = p_1 + 2(p_3 + p_4 + \cdots + p_k)$. Suppose that $p_1 ≥ 2$, $p_k ≥ 1$ and $k ≥ 4$. Then, by replacing $2K_1 \cup K_k$ by $K_3 \cup K_{k-1}$ we obtain a graph *H* with $\varepsilon(H) \leq \varepsilon(G)$. Further, $\varepsilon(H) = \varepsilon(G)$ if and only if $k = 4$.

2. $\mathbf{m}_n(n-1) = 3$ if $n \ge 4$. Let $G \in \mathcal{G}(n; f = n-1)$. Then $\varepsilon(G) = 3$ if and only if $n \ge$ 4 and $G = (n-3)K_1 \cup K_2$.

3. Let *a* be an integer with $\frac{2n}{3} \le a \le n - 1$. If (p, q) is the solution of $p + 3q = n$ and $p+2q = a$, then $G = pK_1 \cup qK_3$ satisfies $f(G) = a$.

4. Let *a* be an integer with $\frac{2n}{3} \le a \le n-2$. and $G \in \mathcal{G}(n; f = a)$ such that $\varepsilon(G) =$ **m**_n(*a*). Then by Theorem 3.37, we can choose $G = p_1 K_1 \cup p_3 K_3 \cup p_4 K_4 \cup \cdots \cup p_k K_k \in G^*(n; f = a)$ and $k \leq 4$. If $k = 4$, then $p_1 \geq 2$. Thus, there exists a graph $H = p_1 K_1 \cup pK_3$ such that $p+3q = n$, $p+2q = a$ and $\varepsilon(H) = \varepsilon(G) = \mathbf{m}_n(a)$.

5. Let *a* be an integer with $a < \frac{2n}{3}$ and $G \in \mathcal{G}(n; f = a)$ and $\Delta(G) \geq 3$. Thus if $G =$ $p_1 K_1 \cup p K_3 \cup p_4 K_4 \cup \dots \cup p_k K_k f(G) = a < \frac{2n}{3}$ and $\varepsilon(G) = \mathbf{m}_n(a)$, then $p_1 \le 1$ and $k \ge 4$.

6. If $n = rq + t$, $0 \le t < r$, then $T_{n,r}$ consists of t partite sets of cardinality $\left[\frac{n}{r}\right]$ and $r-t$ partite sets of cardinality $\left\lfloor \frac{n}{r} \right\rfloor$.

7. $\varepsilon(T_{n,r}) = \binom{n-a}{2} + (r-1) \binom{a+1}{2}$, where $a = \lfloor \frac{n}{r} \rfloor$.

8. Let $t(n; r) = \varepsilon(T_{n,r})$. Then for a fixed *n*, by using elementary arithmetic, we get $t(n, r-1) < t(n, r)$ for all $r, 2 \le r \le n$. In fact $t(n, r) - t(n, r-1) \ge {a+1 \choose 2}$, where $a = \lfloor \frac{n}{r} \rfloor$.

Let $\bar{t}(n, r) = \binom{n}{2} - \varepsilon(T_{n,r})$. Summarizing the results, we have the following theorems.

Theorem 3.38 *Let n and a be integers with* $2 \le a \le n - 1$ *. Then*

1. $m_n(n) = 0$,

2. $m_n(n-1) = 3$ *if* $n \ge 3$ *and* $G = (n-3)K_1 \cup K_3$ *is the only graph of order n satisfying* $f(G) = n - 1$ *and* $\varepsilon(G) = 3$,

3. $\mathbf{m}_n(n-i) = 3i \text{ if } 1 \leq i \leq \lceil \frac{n}{3} \rceil,$

4. Suppose $4 \le a < \frac{2n}{3}$. Then $\mathbf{m}_n(a) = \bar{t}(n, q)$ if $a = 2q$, and $\mathbf{m}_n(a) = \bar{t}(n-1, q)$ *if a* = 2*q*+1, *for some integer q, and*

5.
$$
\mathbf{m}_n(3) = \begin{pmatrix} n-1 \\ 2 \end{pmatrix}
$$
 if $n \ge 3$, and $\mathbf{m}_n(2) = \begin{pmatrix} n \\ 2 \end{pmatrix}$ if $n \ge 2$.

Theorem 3.39 *Let n and m be integers with* $0 \le m \le {n \choose 2}$ *. Then*

- 1. min(f ; *m*, *n*) = max(f ; *m*, *n*) = *n if* and only *if* $m \in \{0, 1, 2\}$,
- 2. min(f; *m*, *n*) = max(f; *m*, *n*) = 2 *if and only if* $m = \binom{n}{2}$, *and*
- 3. *for* $3 \le a \le n-1$, $\min(f; m, n) = a$ *if and only if* $\mathbf{m}_n(a) \le m < \mathbf{m}_n(a-1)$.

We now find the minimum number of edges of a connected graph order *n* having the forest number *a*. Let $CG(n; f = a)$ be the set of all connected graphs of order *n* having the forest number *a*. For integers *n* and *a*, let

$$
cm_n(a) = \min{\{\varepsilon(G) : G \in \mathcal{CG}(n; f = a)\}}.
$$

Further, $\mathbf{cm}_n(n) = n - 1$, $\mathbf{cm}_n(2) = {n \choose 2}$. We now find $\mathbf{cm}_n(a)$ for $2 < a < n$.

Let $\mathcal{CG}^*(n; f = a) = \{G \in \mathcal{CG}(n; f = a) : G \text{ is obtained from } \lceil \frac{a}{2} \rceil \text{ disjoint cliques} \}$ and $\lceil \frac{a}{2} \rceil - 1$ edgesg). We have the following theorem.

Theorem 3.40 *Let G be a connected graph of order n with* $f(G) = a$ *. Then there exists a graph* $H \in \mathcal{CG}^*(n; f = a)$ *such that* $\varepsilon(H) \leq \varepsilon(G)$ *.*

By Theorem 3.40 we know that for a graph $G \in \mathcal{CG}(n; f = a)$, there may be many such graphs $H \in \mathcal{CG}^*(n; f = a)$. We now seek for such a graph *H* with minimum number of edges. By applying Turán Theorem once again, we have the following theorems.

Theorem 3.41 *Let n and a be integers with* $2 \le a \le n-1$. *Then*

1. **cm**_n $(n) = n - 1$,

2. *Suppose that* $4 \le a \le n-1$ *. Then* $\mathbf{cm}_n(a) = \bar{t}(n, q) + q - 1$ *if* $a = 2q$ *, and* **cm**_{*n*}(a) = \bar{t} (n - 1, q)+q if a = 2q + 1, for some integer q, and

3. **cm**_{*n*}(3) = $\binom{n-1}{2}$ + 1 *if n* ≥ 3, *and* **cm**_{*n*}(2) = $\binom{n}{2}$ *if n* ≥ 2.

Theorem 3.42 *Let n and m be integers with* $n-1 \le m \le \binom{n}{2}$ *. Then*

- 1. Min(f ; *m*, *n*) = Max(f ; *m*, *n*) = *n* if and only if *m* = *n* 1,
- 2. Min(f; *m*, *n*) = Max(f; *m*, *n*) = 2 *if and only if* $m = \binom{n}{2}$, *and*
- 3. *for* $3 \le a \le n-1$, Min(*f*; *m*, *n*) = *a if* and *only if* $\mathbf{cm}_n(a) \le m < \mathbf{cm}_n(a-1)$.

Problem 10. Several graph parameters have been proved to satisfy an intermediate value theorem over $\mathcal{G}(m, n)$ and $\mathcal{CG}(m, n)$ as stated in Theorem 2.15. Find min $(\pi; m, n)$; max $(\pi; m, n)$, Min(π ; *m*, *n*) and Max(π ; *m*, *n*) where $\pi \in {\alpha, \alpha' \gamma}$.

Acknowledgment

The author would like to thank the Thailand Research Fund for providing him financial support to do research in Graph Theory for the past 10 years.

References

- 1. Bondy, J. A., and Murty, U. S. R. 1976. Graph Theory with Applications. 1st Edition. The MacMillan Press. 264 p.
- 2. Harary, F. Mokken, R. J., and Plantholt, M. 1983. Interpolation Theorems for Diameters of Spanning Trees. IEEE Trans. *Circuits and Systems* 30(7): 429-432.
- 3. Eggleton, R. B., and Holton, D. A. 1979. Graphic Sequences, Combinatorial Mathematics, VI (Proceedings of the Sixth Australian Conference. University of New England, Armidale. New England. Armidale. 1978). *Lecture Notes in Mathematics* 748: 1-10.
- 4. Taylor, R. 1981. Constrained Switchings in Graphs. Combinatorial Mathematics, VIII (Geelong, 1980). *Lecture Notes in Mathematics* 884: 314-336.
- 5. Taylor, R. 1982. Switchings Constrained to 2-Connectivity in Simple Graphs. *SIAM Journal on Discrete Mathematics* 3(1): 114-121.
- 6. Erdös, P., and Gallai, T. 1964. Solution of a Problem of Dirac, Theory of Graphs and its Applications: Proceedings of the Symposium, Smolenice, June 1963. Publishing House of the Czechoslavian Academy of Science, Prague: 167-168.
- 7. Caccetta, L., and Pullman, N. J. 1990. Regular Graphs with Prescribed Chromatic Number. *Journal of Graph Theory* 14: 65-71.
- 8. Punnim, N. 2002. Degree Sequences and Chromatic Number of Graphs. Graphs and Combinatorics 18(3): 597-603.
- 9. Punnim, N. 2002. The Clique Number of Regular Graphs. *Graphs and Combinatorics* 18(4): 781-785.
- 10. Punnim, N. 2004. The Matching Number of Regular Graphs. *Thai Journal of Mathematics* 2: 133-140.
- 11. Gallai, T. 1959. Über extreme Punkt-und Kantenmenger. *Annales Universitatis Scientarium Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica* 2: 133-138.
- 12. Punnim, N. 2003. On Maximum Induced Forests in Graphs. *Southeast Asian Bulletin of Mathematics* 27: 667-673.
- 13. Punnim, N. 2004. Interpolation Theorems on Graph Parameters. *Southeast Asian Bulletin of Mathematics* 28: 533-538.
- 14. Punnim, N. 2007. Interpolation Theorems in Jump Graphs. *The Australasian Journal of Combinatorics* 39: 103-114.
- 15. Brooks, R. L. 1941. On Colouring the Nodes of a Network. *Mathematical Proceedings of the Cambridge Philosophical Society* 37: 194-197.
- 16. Punnim, N. 2001. On F(j)-graphs and their applications. *The Journal of Combinatorial Mathematics and Combinatorial Computing* 38: 65-72.
- 17. Punnim, N. 2003. Forests in Random Graphs. *Southeast Asian Bulletin of Mathematics* 27: 333-339.
- 18. Punnim, N. 2005. Decycling Regular Graphs. *The Australasian Journal of Combinatorics* 32: 147-162.
- 19. Punnim, N. 2006. Decycling Connected Regular Graphs. *The Australasian Journal of Combinatorics* 35: 155-169.
- 20. West, D. B. 2001. Introduction to Graph Theory. 2nd Edition. U.S.A. Prentice Hall.
- 21. Chantasartrassmee, A., and Punnim, N. 2008. Forest in Biquartic Graphs. *Contributions in General Algebra II (ICDMA)*: 71-77.
- 22. Pike, D. A. 2003. Decycling Hypercubes. *Graphs and Combinatorics* 19: 547-550.
- 23. Tutte, W. T. 1947. The Factorization of Linear Graphs. *Journal of the London Mathematical Society* 22: 107-111.
- 24. Wallis, W. D. 1981. The Smallest Regular Graphs without One-Factors. *Ars Combinatoria*11: 295-300.
- 25. Mantel, W. 1907. Problem 28, Solution by Gouwentak, H., Mantel, W., Teixeira de Mattes, J., Schuh, F., and Wythoff, W. A. *Wiskundige Opgaven* 10: 60-61.
- 26. Turán, P. 1941. Eine Extremalaufgabe aus der Graphentheorie. Mat. *Fiz. Lapook* 48: 436-452.
- 27. Chantasartrassmee, A., and Punnim, N. 2008. The Forest Number in (n,m)-Graphs. *Lecture Notes in Computer Science (LNCS)* 4535: 33-40.