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Effective Hamiltonian
for Two-Orbital Hubbard Model
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ABSTRACT

The effective Hamiltonian for spinless two-orbital Hubbard model has been
derived using the canonical transformation. The generator is chosen to annihilate the
mixing terms between the double occupied and single occupied basis. Furthermore, the
limits of half filling and strong on-site Coulomb interaction have been applied. The
result is the effective Hamiltonian that is written in term of pseudo-spin operators. The
Hilbert space of this Hamiltonian is therefore restricted to only basis states with one
electron on each lattice site and the dimension of the Hilbert space is reduced
accordingly. This would benefit the numerical methods that will be used to calculate the

ground state properties of this model.
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Introduction

The interest in strongly correlated electronic systems has increased greatly in
the last decade. This is mainly because of the discovery of vary rich properties of
transition metal oxides such as the high temperature superconductivity and the colossal
magnetore-sistance [1, 2]. It is believed that the correlation between the electrons are
responsible for such phenomena. It has also been recognised that the orbital degeneracy
plays a major role in the strongly correlated electronic systems [3-5]. It is believed to
be responsible for an anomalous magnetic behaviour found in lithium nickel oxide [6]. It
is also found to be an important ingredient for understanding the physical properties of
the manganite compounds La, , Ca, MnO, [3, 5, 7]. Coupled orbital, charge and spin
degree of freedoms, produce a fascinating phase diagram in this kind of materials [3].
Though there have been an intensive theoretical studies on this degree of freedom in
various complex models for manganite [7 -11], it is still helpful to study the effect of
the orbital degree of freedom alone.

In this paper we consider a situation where there is an orbital degeneracy with
the absence of the spin degeneracy. The absence of the spin degeneracy is realised in the
ordered phase of the system such as magnetite (Fe,O,) and the mixed manganese
compounds e.g. La, ,Ca, ;,MnO, which are known as manganite. In magnetite, the
Pauli exclusion principle prevents the conduction electrons in the ¢,, bands having their
spins parallel to the core octahedral site spins. The conduction electrons in manganite, in
an e, bands, are subjected to a very strong Hund’s rule coupling, therefore their spin is
forced to be parallel to the core spin. In the ground state or at low temperatures well
below the magnetic ordering temperature, the core spins of both magnetite and
manganite are well ordered, therefore the conduction electrons of both materials lose
their spin degeneracy.

In the theoretical studies of electronic behaviours of this system, many crucial
models have been invented. The Hubbard model [12] is one of the popular models that
has been used to study strong correlated electronic systems in many systems. When it
includes the orbital degree of freedom, it has been called the orbital Hubbard model.
Therefore, it has been used to study the effect of orbital occupied by electrons in many
conditions; in finite on-site coulomb potential U with full cubic symmetries by Yuan et al.
[9], in the strong-coupling limit with full cubic symmetries by Horsch et al. [11] and in
U — oo with finite size in 2D Hamiltonian by C. Srinitiwarawong and G. A. Gerhring
[13]. In their work, finite system size was considered as full cubic symmetries and 2D

cluster. Moreover, they studied the orbital ordering of the system in each case.
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In this paper we will derive the effective Hamiltonian from the spinless orbital
Hubbard model in the limits of half filling and large on-site coulomb interaction. The
effective Hamiltonian is obtained from the canonical transformation by projecting out

the high energy states.

Two-Orbital Hubbard Model

The Hubbard Hamiltonian is written as

H = Hyop + Hy. (1)

The two terms are the description of opposing tendencies: metallic and insulator phases.

The H;; denotes the on-site interaction term, which can be written as
Hy = U Mgl (2)
i

where 7Niqp) is the number operator of an electron in a(b)-orbital at site ¢ This term
explains the Coulomb repulsion among electrons sharing the same site, with U defines
the Coulomb potential energy. This term tends to resist the living of two electrons on

the same site and leading to the insulator phase. In contrast,

Hiop = Y Dt clacis, (3)

<ij> af

where the Greek indices refer to the orbital quantum numbers, denotes the hopping of
one electron to nearest neighbor sites and thus brings about the metallic behaviors. The
summation over (ij) is taken only over the pair of nearest neighbor sites.

The states of electrons occupying on a particular site ¢ are defined as four basis

states in the followings:

|0); empty state at site i (no electron occupies at site i), (4)
lay; = ¢l |0); electron occupies a-orbital at site i, (5)
b); = cl,]o); electron occupies b-orbital at site i, (6)
ld); = cl,cho); two electrons occupy both a and b-orbital at site i, (7)

where C;ra(b) is a creation operator which creates an electron at site ¢ with «(b) orbital.
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All possible hopping processes in two-orbital Hubbard Hamiltonian are
separated into three parts; creating the doubly occupied site ("), annihilating the
doubly occupied site (H~) and the processing that does not change the number of doubly

occupied sites (H°). The Hamiltonian is written as
Huop =Y {H, , +H_ +H,  +H,  +H +H _} (8)
where o and -0 refer to orbital degree of freedoms which the corresponding states are

orthogonal and ¢, _, refers to the hopping amplitude between orbitals. Terms in the

Hamiltonian are written as

ng,a = — Z Ztmo—{’fli’,gc;;racj'a—ﬁj,,g + (1 — ﬁi,fa)chcjo(l — ﬁj_’70') + H.C.}./ (9)
<ij> o
H! = _ E Ztg’ o{Mi— gcwc] —oNje + (1 — ﬁi7,a)czacj,,g(1 — o)
77 <ij> o
+ ﬁjac},faciaﬁi,—a + (1 - ﬁjﬂ)c;r’,fo'ciﬁ(l - ﬁi,—ﬂ)}’ (10)
t” = — Z thm{ — Ny, g)cwcjgnj o+ H.c}, (11)
<ij> o
- Z Zf“—’ ‘7{ nl U)FZUCJ UnJU + (1 - ﬁjU)C;,—oCioﬁi,fa}' (12)
<ij> o
tm, == Z Ztov{nz UCWCJU( —Mj—o) + Hoc}, (13)
<ij> o
tn. e Z thf U{HZ UCWCJ’ ( ﬁja) —I—ﬁng;_gciU(l - ﬁi,fa)}v (14)
<ij> o

Derivation of the Effective Hamiltonian

When the strongly correlated electrons system are considered, the mixed states
between the two subbands, doubly occupied and singly occupied subbands, will appear
due to the hopping Hamiltonian; creating and annihilating the doubly occupied states
respectively as shown in Egs. (11) -(12) and (13) -(14). We need to separate these
mix states and therefore, the canonical transformation method [14, 15] is introduced to
solve this problem. The unmixed states can be found by rotating to such a new suitable
basis. According to (8) the two-orbitals Hubbard Hamiltonian can be written as

H = H;;a+H;;b+H;f + H'

top

+H, +H, +H, +H,

oy

+ Htoaa + Htoab + Htol HO

1233

+HU, (15)
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or in short

H=H+ H; + H{ + Hy. (16)

The effective Hamiltonian is written as

Z‘Q

Hy = e"He ™ = H+i[S, H]+ 5[57 (S, H]] + ..., (17)
= Hy+ H + H; + HY +i[S, Hy]
-2
+ i[9, H;f+H;+H?]+%[S, (S, H]| + ... (18)

The generator S is chosen in such away that H.s does not connect different
subbands. Therefore the largest cross-terms, H;" and F; should be eliminated. They are
cancelled from the commuted term, i[S, Hy]. This condition will be brought to find the
suitable generator S. Note that terms with orders of ¢ higher than 2 are also neglected.

The generator S is separated into two parts being S = S’ 4+ S”. We will let &
and §” be in the order of ¢ and ¢? respectively where ¢ is the hopping amplitude in all
cases of an electron hopping between two sites. The operator S’ can be chosen to be

—1

§' = (H ~ H). (19)

Term of [S, Hy] replaced by S = 5"+ S" , becomes

i[S, Hy| =4S, Hy] + i[S", Hy], (20)
whereas
il Hy] = —(H/ + H;), (21)
and
i8", Hol = ~ 5 [H7 — Hy, HY) (22)
Moreover, we get
i[S, H," + H; + HY] =[S, Hf + H + H)] +i[S", H} + H + H}]. (23)

The first term of the right-hand side which is the order of ¢? can be separated into two

parts
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1.€.
2

i[S'H, + H ] = i

[H, H], (24)
and

e 1 _

where Eq. (25) is cancelled by Eq. (22). Moreover, the second term of the right hand
side in Eq. (23) has disappeared because it is of the order ¢3.

Besides, the term £

~[S,[S, Hy]] can be written as

i? 1

18,18, Hyl) = — = (7 17 (26)
Finally, substituting Egs. (21), (22), (24), (25) and (26) into Eq. (18), the effective

Hamiltonian to the order of 2 can be written as

Hg = Hy +H, +H) +H +Hy

o
1
—[H +H}' +H +H

+ U aa top?

H, +H_ +H, +H,] (27)

In the conditions of large onsite coulomb interaction and half-filling, the term of
H} and Hy , which are up against these conditions, are neglected. We need to calculate
the last term on the right hand side of equation (27). For convenience, the suitable tool
so-called the Hubbard operators [15] will be used for this calculation. The hopping

process that take electron from orbital a to orbital b on the same site ; is written as
b—a __
X7 =1b),;{al . (28)

Using this notation, the last terms in equation (27) are written as

HY = H +H] +H, +H,, (29)
Hf = =3 > {teon(o) (X7 X7 + X7 X777)
<ij> o
+ too(n(o) X TOX) T 4 (—0) XTTIX)TO)Y, (30)
and
Ht_ = H;{L+Httlb+Ht;a+H1;b, (31)
HY = = 3 3 {ton(o)(X7OX; 7 4+ X7OX )
<ij> o

+ oo (n(=0) X7 X7 4 (o) X7 TOX DY, (32)
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where 7(0) is

)+l ifo=a
7](0)—{_1 if o=b. (33)

The important term in the large-U limit and half-filling of Hes is #[H;", H;] =
%[Hj H; — H; H;f]. Since we are interested in half filling, the Hilbert space of the ef-
fective Hamiltonian will contain only single occupied states. The H," H, term is absent
since the value of it operating on these single occupied state will be zero. So, the
remaining term which becomes the effective Hamiltonian is only H,"H, . The effective

Hamiltonian in the form of Hubbard operators is written as

1

_EH;H;_ — Z{ Z (IUX—m— UXJ<—U+Z UUvaf Ux—m—axm—a

<ij> o

tJ—UtUU’ —0——0 \V—00 0'—0 —0—0 —0—0
- Y ey, X777 + Z X;770X;
o

—~ U U
t—U—UtO'U O«——0 Yy —0«0 t—U—O'tU—O' 0«0 YV —00
+—;—7—x; X; _;47T7& X;
t*UUtUU O«——0 YO0 t*UUtU*U OO0 YO0
+ LTI T - XX
ttzfa 0«0 YV —0«—0 tUUtU—U 0«0 Y —0+0
— zajﬁxi X; +;7U X777X;
+ Z t‘T—UtUU Xm—cme—fa _ Z tg’ O'XO‘HG'XGV—O'
- U Y = U
t*U*UtUU —00 Yy Oo——0 t*U*UtU*U — 00 YO0
4-;—7%4; X _;‘777& X
t*UUtUO’ —0«0 Yy —0«——0 t*UUtU*U —0«0 Y —00
AN XX (34)

Using the pseudo-spin operators, the effective Hamiltonian becomes

- s .
Hy = ;P{ A R)(F (777 — nzlnj) Q(tab[j‘ ti) (777 + 712471])

i Qtaétb“ (7 +377) + Qt‘}}tb” (7% +777)

n 2(ta(;]tab tblgba) (37 %f +7257)

%—%%? Q?Wﬁ?+ﬁ7ﬁ (35)
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where 7, 7i(; and 7,;) are the pseudo-spin operators at site i(j) defined by

1

Az i T
= S (ClaCia — CipCin),

2
L N
T = CjyCib,s
A _ T ]
77 = ¢pCia,
St t
i = CluCia + Chin. (36)

Conclusion

We have derived the effective Hamiltonian in the limits of half filling and
large onsite coulomb interactions from the spinless orbital Hubbard model. The
canonical transformation has been used to separate the high energy states from the low
energy states. As a result, the terms in Hamiltonian that mix between double occupied
subband and single occupied subband have been eliminated. The Hamiltonian is then
written in the form of pseudo-spin operators which is similar to those used in the
Heisenberg Hamiltonian. This effective Hamiltonian can be used to calculate the ground
state properties. The dimension of the Hilbert space of this Hamiltonian is greatly
reduced and thus benefits the finite-site calculations such as the exact diagonalisation or

the density matrix renormalisation group methods.
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