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บทคัดย่อ

	 ได้ทำการคำนวณแฮมิลโทเนียนยังผลของแบบจำลองฮับบาร์ดชนิดสองออบิทอลที่ไร้สปิน
โดยใช้การแปลงแบบบัญญัติ ได้ทำการเลือกตัวกำเนิดของการแปลงนี้เพื่อให้มีการทำลายพจน์ที่ผสมกัน
ระหว่างฐานหลักที่มีอิเล็กตรอนเดี่ยว และฐานหลักที่มีอิเล็กตรอนคู่ หลังจากนั้นได้ใช้เงื่อนไขให้
อิเล็กตรอนในระบบมีเพียงครึ่งเดียวและอันตรกิริยากันระหว่างอิเล็กตรอนในตำแหน่งเดียวกันมีสูงมาก 
จากเงื่อนไขทั้งสองที่กำหนดให้ จะได้แฮมิลโทเนียนยังผลที่เขียนอยู่ในรูปของตัวดำเนินการสปินเทียม 
จะพบว่าปริภูมิฮิลเบิร์ตของแฮมิลโทเนียนนี้จะมีเฉพาะฐานหลักที่ประกอบไปด้วยอิเล็กตรอนหนึ่งตัวต่อ
หนึ่งตำแหน่งของแลตทิสเท่านั้น เหตุผลดังกล่าวจะทำให้ขนาดของปริภูมิฮิลเบิร์ตเล็กลงซึ่งจะเป็นผลดี
ต่อการคำนวณหาสมบัติต่างๆที่เกี่ยวข้องกับสถานะพื้นของแบบจำลองนี้โดยวิธีคำนวณเชิงตัวเลข
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ABSTRACT

	 The effective Hamiltonian for spinless two-orbital Hubbard model has been 
derived using the canonical transformation. The generator is chosen to annihilate the 
mixing terms between the double occupied and single occupied basis. Furthermore, the 
limits of half filling and strong on-site Coulomb interaction have been applied. The 
result is the effective Hamiltonian that is written in term of pseudo-spin operators. The 
Hilbert space of this Hamiltonian is therefore restricted to only basis states with one 
electron on each lattice site and the dimension of the Hilbert space is reduced 
accordingly. This would benefit the numerical methods that will be used to calculate the 
ground state properties of this model.
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Introduction

The interest in strongly correlated electronic systems has increased greatly in the

last decade. This is mainly because of the discovery of vary rich properties of transition

metal oxides such as the high temperature superconductivity and the colossal magnetore-

sistance [1, 2]. It is believed that the correlation between the electrons are responsible for

such phenomena. It has also been recognised that the orbital degeneracy plays a major role

in the strongly correlated electronic systems [3, 4, 5]. It is believed to be responsible for an

anomalous magnetic behaviour found in lithium nickel oxide [6]. It is also found to be an

important ingredient for understanding the physical properties of the manganite compounds

La1−xCaxMnO3 [3, 5, 7]. Coupled orbital, charge and spin degree of freedoms, produce a

fascinating phase diagram in this kind of materials [3]. Though there have been an intensive

theoretical studies on this degree of freedom in various complex models for manganite [7 -

11], it is still helpful to study the effect of the orbital degree of freedom alone.

In this paper we consider a situation where there is an orbital degeneracy with the

absence of the spin degeneracy. The absence of the spin degeneracy is realised in the ordered

phase of the system such as magnetite (Fe3O4) and the mixed manganese compounds e.g.

La0.7Ca0.3MnO3 which are known as manganite. In magnetite, the Pauli exclusion principle

prevents the conduction electrons in the t2g bands having their spins parallel to the core

octahedral site spins. The conduction electrons in manganite, in an eg bands, are subjected

to a very strong Hund’s rule coupling, therefore their spin is forced to be parallel to the

core spin. In the ground state or at low temperatures well below the magnetic ordering

temperature, the core spins of both magnetite and manganite are well ordered, therefore the

conduction electrons of both materials lose their spin degeneracy.

In the theoretical studies of electronic behaviours of this system, many crucial models

have been invented. The Hubbard model [12] is one of the popular models that has been used

to study strong correlated electronic systems in many systems. When it includes the orbital

degree of freedom, it has been called the orbital Hubbard model. Therefore, it has been

used to study the effect of orbital occupied by electrons in many conditions; in finite on-site
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coulomb potential U with full cubic symmetries by Yuan et al. [9], in the strong-coupling

limit with full cubic symmetries by Horsch at al. [11] and in U → ∞ with finite size in 2D

Hamiltonian by C. Srinitiwarawong and G. A. Gerhring [13]. In their work, finite system size

was considered as full cubic symmetries and 2D cluster. Moreover, they studied the orbital

ordering of the system in each case.

In this paper we will derive the effective Hamiltonian from the spinless orbital Hub-

bard model in the limits of half filling and large on-site coulomb interaction. The effective

Hamiltonian is obtained from the canonical transformation by projecting out the high energy

states.

Two-Orbital Hubbard Model

The Hubbard Hamiltonian is written as

H = Hhop +HU . (1)

The two terms are the description of opposing tendencies: metallic and insulator phases.

The HU denotes the on-site interaction term, which can be written as

HU = U


i

n̂ian̂ib, (2)

where n̂ia(b) is the number operator of an electron in a(b)-orbital at site i. This term explains

the Coulomb repulsion among electrons sharing the same site, with U defines the Coulomb

potential energy. This term tends to resist the living of two electrons on the same site and

leading to the insulator phase. In contrast,

Hhop =


<ij>



αβ

tαβij c†iαcjβ, (3)

where the Greek indices refer to the orbital quantum numbers, denotes the hopping of

one electron to nearest neighbor sites and thus brings about the metallic behaviors. The

summation over ij is taken only over the pair of nearest neighbor sites.

The states of electrons occupying on a particular site i are defined as four basis states
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|di = c†iac

†
ib|0i

empty state at site i (no electron occupies at site i), (4)

electron occupies a-orbital at site i, (5)

electron occupies b-orbital at site i, (6)

two electrons occupy both a and b-orbital at site i , (7)

where c†ia(b) is a creation operator which creates an electron at site i with a(b) orbital.

All possible hopping processes in two-orbital Hubbard Hamiltonian are separated

into three parts; creating the doubly occupied site (H+), annihilating the doubly occupied

site (H−) and the processing that does not change the number of doubly occupied sites (H0).

The Hamiltonian is written as

Hhop =

σ

{H+
tσ,σ + H+

tσ,−σ + H−
tσ,σ + H−

tσ,−σ + H0
tσ,σ + H0

tσ,−σ}, (8)

where σ and −σ refer to orbital degree of freedoms which the corresponding states are orthog-

onal and tσ,−σ refers to the hopping amplitude between orbitals. Terms in the Hamiltonian

are written as

H0
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσn̂j,−σ + (1− n̂i,−σ)c†iσcjσ(1− n̂j,−σ) + H.c.},

H0
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i,−σc
†
iσcj,−σn̂jσ + (1− n̂i,−σ)c†iσcj,−σ(1− n̂jσ)

+ n̂jσc
†
j,−σciσn̂i,−σ + (1− n̂jσ)c†j,−σciσ(1− n̂i,−σ)}.

(9)

(10)

H−
tσ,σ

= − 

<ij>


σ
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potential energy. This term tends to resist the living of two electrons on the same site and

leading to the insulator phase. In contrast,

Hhop =


<ij>



αβ

tαβij c†iαcjβ, (3)

where the Greek indices refer to the orbital quantum numbers, denotes the hopping of

one electron to nearest neighbor sites and thus brings about the metallic behaviors. The

summation over ij is taken only over the pair of nearest neighbor sites.

The states of electrons occupying on a particular site i are defined as four basis states

in the followings:

|0i
|ai = c†ia|0i
|bi = c†ib|0i
|di = c†iac

†
ib|0i

empty state at site i (no electron occupies at site i), (4)

electron occupies a-orbital at site i, (5)

electron occupies b-orbital at site i, (6)

two electrons occupy both a and b-orbital at site i , (7)

where c†ia(b) is a creation operator which creates an electron at site i with a(b) orbital.

All possible hopping processes in two-orbital Hubbard Hamiltonian are separated

into three parts; creating the doubly occupied site (H+), annihilating the doubly occupied

site (H−) and the processing that does not change the number of doubly occupied sites (H0).

The Hamiltonian is written as

Hhop =

σ

{H+
tσ,σ + H+

tσ,−σ + H−
tσ,σ + H−

tσ,−σ + H0
tσ,σ + H0

tσ,−σ}, (8)

where σ and −σ refer to orbital degree of freedoms which the corresponding states are orthog-

onal and tσ,−σ refers to the hopping amplitude between orbitals. Terms in the Hamiltonian

are written as

H0
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσn̂j,−σ + (1− n̂i,−σ)c†iσcjσ(1− n̂j,−σ) + H.c.},

H0
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i,−σc
†
iσcj,−σn̂jσ + (1− n̂i,−σ)c†iσcj,−σ(1− n̂jσ)

+ n̂jσc
†
j,−σciσn̂i,−σ + (1− n̂jσ)c†j,−σciσ(1− n̂i,−σ)}.

(9)

(10)

H−
tσ,σ

= − 

<ij>


σ

tσ,σ{(1− n̂i,−σ)c†iσcjσn̂j,−σ + H.c.}, (11)

H−
tσ,−σ

= − 

<ij>


σ

tσ,−σ{(1− n̂i−σ)c†iσcj,−σn̂jσ + (1− n̂jσ)c†j,−σciσn̂i,−σ}. (12)

H+
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσ(1− n̂j,−σ) + H.c.}, (13)

H+
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i−σc
†
iσcj,−σ(1− n̂jσ) + n̂jσc

†
j,−σciσ(1− n̂i,−σ)}, (14)

in the followings:

|0i
|ai = c†ia|0i
|bi = c†ib|0i
|di = c†iac

†
ib|0i

empty state at site i (no electron occupies at site i), (4)

electron occupies a-orbital at site i, (5)

electron occupies b-orbital at site i, (6)

two electrons occupy both a and b-orbital at site i , (7)

where c†ia(b) is a creation operator which creates an electron at site i with a(b) orbital.

All possible hopping processes in two-orbital Hubbard Hamiltonian are separated

into three parts; creating the doubly occupied site (H+), annihilating the doubly occupied

site (H−) and the processing that does not change the number of doubly occupied sites (H0).

The Hamiltonian is written as

Hhop =

σ

{H+
tσ,σ + H+

tσ,−σ + H−
tσ,σ + H−

tσ,−σ + H0
tσ,σ + H0

tσ,−σ}, (8)

where σ and −σ refer to orbital degree of freedoms which the corresponding states are orthog-

onal and tσ,−σ refers to the hopping amplitude between orbitals. Terms in the Hamiltonian

are written as

H0
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσn̂j,−σ + (1− n̂i,−σ)c†iσcjσ(1− n̂j,−σ) + H.c.},

H0
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i,−σc
†
iσcj,−σn̂jσ + (1− n̂i,−σ)c†iσcj,−σ(1− n̂jσ)

+ n̂jσc
†
j,−σciσn̂i,−σ + (1− n̂jσ)c†j,−σciσ(1− n̂i,−σ)}.

(9)

(10)

H−
tσ,σ

= − 

<ij>


σ

tσ,σ{(1− n̂i,−σ)c†iσcjσn̂j,−σ + H.c.}, (11)

H−
tσ,−σ

= − 

<ij>


σ

tσ,−σ{(1− n̂i−σ)c†iσcj,−σn̂jσ + (1− n̂jσ)c†j,−σciσn̂i,−σ}. (12)

H+
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσ(1− n̂j,−σ) + H.c.}, (13)

H+
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i−σc
†
iσcj,−σ(1− n̂jσ) + n̂jσc

†
j,−σciσ(1− n̂i,−σ)}, (14)

in the followings:
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†
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where c†ia(b) is a creation operator which creates an electron at site i with a(b) orbital.

All possible hopping processes in two-orbital Hubbard Hamiltonian are separated

into three parts; creating the doubly occupied site (H+), annihilating the doubly occupied

site (H−) and the processing that does not change the number of doubly occupied sites (H0).

The Hamiltonian is written as

Hhop =

σ

{H+
tσ,σ + H+
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tσ,σ + H−
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tσ,σ + H0

tσ,−σ}, (8)

where σ and −σ refer to orbital degree of freedoms which the corresponding states are orthog-

onal and tσ,−σ refers to the hopping amplitude between orbitals. Terms in the Hamiltonian

are written as

H0
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσn̂j,−σ + (1− n̂i,−σ)c†iσcjσ(1− n̂j,−σ) + H.c.},

H0
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i,−σc
†
iσcj,−σn̂jσ + (1− n̂i,−σ)c†iσcj,−σ(1− n̂jσ)

+ n̂jσc
†
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(9)

(10)

H−
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= − 
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σ
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
σ
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<ij>


σ
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†
iσcjσ(1− n̂j,−σ) + H.c.}, (13)

H+
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i−σc
†
iσcj,−σ(1− n̂jσ) + n̂jσc

†
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in the followings:
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†
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into three parts; creating the doubly occupied site (H+), annihilating the doubly occupied

site (H−) and the processing that does not change the number of doubly occupied sites (H0).

The Hamiltonian is written as

Hhop =

σ

{H+
tσ,σ + H+

tσ,−σ + H−
tσ,σ + H−

tσ,−σ + H0
tσ,σ + H0

tσ,−σ}, (8)

where σ and −σ refer to orbital degree of freedoms which the corresponding states are orthog-

onal and tσ,−σ refers to the hopping amplitude between orbitals. Terms in the Hamiltonian

are written as

H0
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσn̂j,−σ + (1− n̂i,−σ)c†iσcjσ(1− n̂j,−σ) + H.c.},

H0
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i,−σc
†
iσcj,−σn̂jσ + (1− n̂i,−σ)c†iσcj,−σ(1− n̂jσ)

+ n̂jσc
†
j,−σciσn̂i,−σ + (1− n̂jσ)c†j,−σciσ(1− n̂i,−σ)}.

(9)

(10)

H−
tσ,σ

= − 

<ij>


σ

tσ,σ{(1− n̂i,−σ)c†iσcjσn̂j,−σ + H.c.}, (11)

H−
tσ,−σ

= − 

<ij>


σ

tσ,−σ{(1− n̂i−σ)c†iσcj,−σn̂jσ + (1− n̂jσ)c†j,−σciσn̂i,−σ}. (12)

H+
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσ(1− n̂j,−σ) + H.c.}, (13)

H+
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i−σc
†
iσcj,−σ(1− n̂jσ) + n̂jσc

†
j,−σciσ(1− n̂i,−σ)}, (14)
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in the followings:

|0i
|ai = c†ia|0i
|bi = c†ib|0i
|di = c†iac

†
ib|0i

empty state at site i (no electron occupies at site i), (4)

electron occupies a-orbital at site i, (5)

electron occupies b-orbital at site i, (6)

two electrons occupy both a and b-orbital at site i , (7)

where c†ia(b) is a creation operator which creates an electron at site i with a(b) orbital.

All possible hopping processes in two-orbital Hubbard Hamiltonian are separated

into three parts; creating the doubly occupied site (H+), annihilating the doubly occupied

site (H−) and the processing that does not change the number of doubly occupied sites (H0).

The Hamiltonian is written as

Hhop =

σ

{H+
tσ,σ + H+

tσ,−σ + H−
tσ,σ + H−

tσ,−σ + H0
tσ,σ + H0

tσ,−σ}, (8)

where σ and −σ refer to orbital degree of freedoms which the corresponding states are orthog-

onal and tσ,−σ refers to the hopping amplitude between orbitals. Terms in the Hamiltonian

are written as

H0
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσn̂j,−σ + (1− n̂i,−σ)c†iσcjσ(1− n̂j,−σ) + H.c.},

H0
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i,−σc
†
iσcj,−σn̂jσ + (1− n̂i,−σ)c†iσcj,−σ(1− n̂jσ)

+ n̂jσc
†
j,−σciσn̂i,−σ + (1− n̂jσ)c†j,−σciσ(1− n̂i,−σ)}.

(9)

(10)

H−
tσ,σ

= − 

<ij>


σ

tσ,σ{(1− n̂i,−σ)c†iσcjσn̂j,−σ + H.c.}, (11)

H−
tσ,−σ

= − 

<ij>


σ

tσ,−σ{(1− n̂i−σ)c†iσcj,−σn̂jσ + (1− n̂jσ)c†j,−σciσn̂i,−σ}. (12)

H+
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσ(1− n̂j,−σ) + H.c.}, (13)

H+
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i−σc
†
iσcj,−σ(1− n̂jσ) + n̂jσc

†
j,−σciσ(1− n̂i,−σ)}, (14)

in the followings:

|0i
|ai = c†ia|0i
|bi = c†ib|0i
|di = c†iac

†
ib|0i

empty state at site i (no electron occupies at site i), (4)

electron occupies a-orbital at site i, (5)

electron occupies b-orbital at site i, (6)

two electrons occupy both a and b-orbital at site i , (7)

where c†ia(b) is a creation operator which creates an electron at site i with a(b) orbital.

All possible hopping processes in two-orbital Hubbard Hamiltonian are separated

into three parts; creating the doubly occupied site (H+), annihilating the doubly occupied

site (H−) and the processing that does not change the number of doubly occupied sites (H0).

The Hamiltonian is written as

Hhop =

σ

{H+
tσ,σ + H+

tσ,−σ + H−
tσ,σ + H−

tσ,−σ + H0
tσ,σ + H0

tσ,−σ}, (8)

where σ and −σ refer to orbital degree of freedoms which the corresponding states are orthog-

onal and tσ,−σ refers to the hopping amplitude between orbitals. Terms in the Hamiltonian

are written as

H0
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσn̂j,−σ + (1− n̂i,−σ)c†iσcjσ(1− n̂j,−σ) + H.c.},

H0
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i,−σc
†
iσcj,−σn̂jσ + (1− n̂i,−σ)c†iσcj,−σ(1− n̂jσ)

+ n̂jσc
†
j,−σciσn̂i,−σ + (1− n̂jσ)c†j,−σciσ(1− n̂i,−σ)}.

(9)

(10)

H−
tσ,σ

= − 

<ij>


σ

tσ,σ{(1− n̂i,−σ)c†iσcjσn̂j,−σ + H.c.}, (11)

H−
tσ,−σ

= − 

<ij>


σ

tσ,−σ{(1− n̂i−σ)c†iσcj,−σn̂jσ + (1− n̂jσ)c†j,−σciσn̂i,−σ}. (12)

H+
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσ(1− n̂j,−σ) + H.c.}, (13)

H+
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i−σc
†
iσcj,−σ(1− n̂jσ) + n̂jσc

†
j,−σciσ(1− n̂i,−σ)}, (14)

Derivation of the Effective Hamiltonian

When the strongly correlated electrons system are considered, the mixed states be-

tween the two subbands, doubly occupied and singly occupied subbands, will appear due to

the hopping Hamiltonian; creating and annihilating the doubly occupied states respectively

as shown in Eqs. (11) - (12) and (13) - (14). We need to separate these mix states and

therefore, the canonical transformation method [14, 15] is introduced to solve this problem.

The unmixed states can be found by rotating to such a new suitable basis. According to (8)

the two-orbitals Hubbard Hamiltonian can be written as

H = H+
taa

+H+
tab

+H+
tba

+H+
tbb
+H−

taa
+H−

tab
+H−

tba
+H−

tbb

+ H0
taa

+H0
tab

+H0
tba

+H0
tbb
+HU , (15)

or in short

H = H+
t +H−

t +H0
t +HU . (16)

The effective Hamiltonian is written as

Heff = eiSHe−iS = H + i[S, H] +
i2

2
[S, [S, H]] + ..., (17)

= HU +H+
t +H−

t +H0
t + i[S, HU ]

+ i[S, H+
t +H−

t +H0
t ] +

i2

2
[S, [S,H]] + .... (18)

The generator S is chosen in such away that Heff does not connect different subbands.

Therefore the largest cross-terms, H+
t and H−

t , should be eliminated. They are cancelled

from the commuted term, i[S, HU ]. This condition will be brought to find the suitable

generator S. Note that terms with orders of t higher than 2 are also neglected.

The generator S is separated into two parts being S = S  + S . We will let S  and S 

be in the order of t and t2 respectively where t is the hopping amplitude in all cases of an

electron hopping between two sites. The operator S  can be chosen to be

S  =
−i

U
(H+

t −H−
t ). (19)

in the followings:

|0i
|ai = c†ia|0i
|bi = c†ib|0i
|di = c†iac

†
ib|0i

empty state at site i (no electron occupies at site i), (4)

electron occupies a-orbital at site i, (5)

electron occupies b-orbital at site i, (6)

two electrons occupy both a and b-orbital at site i , (7)

where c†ia(b) is a creation operator which creates an electron at site i with a(b) orbital.

All possible hopping processes in two-orbital Hubbard Hamiltonian are separated

into three parts; creating the doubly occupied site (H+), annihilating the doubly occupied

site (H−) and the processing that does not change the number of doubly occupied sites (H0).

The Hamiltonian is written as

Hhop =

σ

{H+
tσ,σ + H+

tσ,−σ + H−
tσ,σ + H−

tσ,−σ + H0
tσ,σ + H0

tσ,−σ}, (8)

where σ and −σ refer to orbital degree of freedoms which the corresponding states are orthog-

onal and tσ,−σ refers to the hopping amplitude between orbitals. Terms in the Hamiltonian

are written as

H0
tσ,σ

= − 

<ij>


σ

tσ,σ{n̂i,−σc
†
iσcjσn̂j,−σ + (1− n̂i,−σ)c†iσcjσ(1− n̂j,−σ) + H.c.},

H0
tσ,−σ

= − 

<ij>


σ

tσ,−σ{n̂i,−σc
†
iσcj,−σn̂jσ + (1− n̂i,−σ)c†iσcj,−σ(1− n̂jσ)

+ n̂jσc
†
j,−σciσn̂i,−σ + (1− n̂jσ)c†j,−σciσ(1− n̂i,−σ)}.

(9)
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Derivation of the Effective Hamiltonian

When the strongly correlated electrons system are considered, the mixed states be-

tween the two subbands, doubly occupied and singly occupied subbands, will appear due to

the hopping Hamiltonian; creating and annihilating the doubly occupied states respectively

as shown in Eqs. (11) - (12) and (13) - (14). We need to separate these mix states and

therefore, the canonical transformation method [14, 15] is introduced to solve this problem.

The unmixed states can be found by rotating to such a new suitable basis. According to (8)

the two-orbitals Hubbard Hamiltonian can be written as

H = H+
taa

+H+
tab

+H+
tba

+H+
tbb
+H−

taa
+H−

tab
+H−

tba
+H−

tbb

+ H0
taa

+H0
tab

+H0
tba

+H0
tbb
+HU , (15)

or in short

H = H+
t +H−

t +H0
t +HU . (16)

The effective Hamiltonian is written as

Heff = eiSHe−iS = H + i[S, H] +
i2

2
[S, [S, H]] + ..., (17)

= HU +H+
t +H−

t +H0
t + i[S, HU ]

+ i[S, H+
t +H−

t +H0
t ] +

i2

2
[S, [S,H]] + .... (18)

The generator S is chosen in such away that Heff does not connect different subbands.

Therefore the largest cross-terms, H+
t and H−

t , should be eliminated. They are cancelled

from the commuted term, i[S, HU ]. This condition will be brought to find the suitable

generator S. Note that terms with orders of t higher than 2 are also neglected.

The generator S is separated into two parts being S = S  + S . We will let S  and S 

be in the order of t and t2 respectively where t is the hopping amplitude in all cases of an

electron hopping between two sites. The operator S  can be chosen to be

S  =
−i

U
(H+

t −H−
t ). (19)
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electron hopping between two sites. The operator S  can be chosen to be

S  =
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U
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t ). (19)

Term of i[S,HU ] replaced by S = S  + S , becomes

i[S, HU ] = i[S , HU ] + i[S , HU ], (20)

whereas

i[S, HU ] = −(H+
t +H−

t ), (21)

and

i[S , HU ] = − 1

U
[H+

t −H−
t , H0

t ]. (22)

Moreover, we get

i[S, H+
t +H−

t +H0
t ] = i[S , H+

t +H−
t +H0

t ] + i[S , H+
t +H−

t +H0
t ]. (23)

The first term of the right-hand side which is the order of t2 can be separated into two parts

i.e.

i[S , H+
t +H−

t ] =
2

U
[H+

t , H−
t ], (24)

and

i[S , H0
t ] =

1

U
[H+

t −H−
t , H0

t ], (25)

where Eq. (25) is cancelled by Eq. (22). Moreover, the second term of the right hand side

in Eq. (23) has disappeared because it is of the order t3.

Besides, the term i2

2
[S, [S, HU ]] can be written as

i2

2
[S, [S,HU ]] = − 1

U
[H+

t , H−
t ]. (26)
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+H0
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+HU
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1
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[H+

taa
+H+

tab
+H+
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+H+
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, H−

taa
+H−
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+H−
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]. (27)
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In the conditions of large onsite coulomb interaction and half-filling, the term of H0
t

and HU , which are up against these conditions, are neglected. We need to calculate the lastterm on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as

H+
t = H+

taa
+H+

tab
+H+

tba
+H+

tbb
, (29)

H+
t = − 

<ij>


σ

{tσση(σ)(X
d←−σ
i X0←σ

j +Xd←−σ
j X0←σ

i )

+ tσ−σ(η(σ)X
d←−σ
i X0←−σ

j + η(−σ)Xd←σ
j X0←σ

i )}, (30)

and

H−
t = H−

taa
+H−

tab
+H−

tba
+H−

tbb
, (31)

H−
t = − 

<ij>


σ

{tσση(σ)(X
σ←0
i X−σ←d

j +Xσ←0
j X−σ←d

i )

+ tσ−σ(η(−σ)Xσ←0
i Xσ←d

j + η(σ)X−σ←0
j X−σ←d

i )}, (32)

where η(σ) is

η(σ) =





+1 if σ = a

−1 if σ = b.
(33)

The important term in the large-U limit and half-filling of Heff is 1
U
[H+

t , H−
t ] =

1
U
[H+

t H−
t − H−

t H+
t ]. Since we are interested in half filling, the Hilbert space of the ef-

fective Hamiltonian will contain only single occupied states. The H+
t H−

t term is absent

since the value of it operating on these single occupied state will be zero. So, the remaining

term which becomes the effective Hamiltonian is only H−
t H+

t . The effective Hamiltonian in

the form of Hubbard operators is written as

− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j
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term which becomes the effective Hamiltonian is only H−
t H+

t . The effective Hamiltonian in

the form of Hubbard operators is written as

− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j

term on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as

H+
t = H+

taa
+H+

tab
+H+

tba
+H+

tbb
, (29)

H+
t = − 

<ij>


σ

{tσση(σ)(X
d←−σ
i X0←σ

j +Xd←−σ
j X0←σ

i )

+ tσ−σ(η(σ)X
d←−σ
i X0←−σ

j + η(−σ)Xd←σ
j X0←σ

i )}, (30)

and

H−
t = H−

taa
+H−

tab
+H−

tba
+H−

tbb
, (31)

H−
t = − 

<ij>


σ

{tσση(σ)(X
σ←0
i X−σ←d

j +Xσ←0
j X−σ←d

i )

+ tσ−σ(η(−σ)Xσ←0
i Xσ←d

j + η(σ)X−σ←0
j X−σ←d

i )}, (32)

where η(σ) is

η(σ) =





+1 if σ = a

−1 if σ = b.
(33)

The important term in the large-U limit and half-filling of Heff is 1
U
[H+

t , H−
t ] =

1
U
[H+

t H−
t − H−

t H+
t ]. Since we are interested in half filling, the Hilbert space of the ef-

fective Hamiltonian will contain only single occupied states. The H+
t H−

t term is absent

since the value of it operating on these single occupied state will be zero. So, the remaining

term which becomes the effective Hamiltonian is only H−
t H+

t . The effective Hamiltonian in

the form of Hubbard operators is written as

− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j

Term of i[S,HU ] replaced by S = S  + S , becomes

i[S, HU ] = i[S , HU ] + i[S , HU ], (20)

whereas

i[S, HU ] = −(H+
t +H−

t ), (21)

and

i[S , HU ] = − 1

U
[H+

t −H−
t , H0

t ]. (22)

Moreover, we get

i[S, H+
t +H−

t +H0
t ] = i[S , H+

t +H−
t +H0

t ] + i[S , H+
t +H−

t +H0
t ]. (23)

The first term of the right-hand side which is the order of t2 can be separated into two parts

i.e.

i[S , H+
t +H−

t ] =
2

U
[H+

t , H−
t ], (24)

and

i[S , H0
t ] =

1

U
[H+

t −H−
t , H0

t ], (25)

where Eq. (25) is cancelled by Eq. (22). Moreover, the second term of the right hand side

in Eq. (23) has disappeared because it is of the order t3.

Besides, the term i2

2
[S, [S, HU ]] can be written as

i2

2
[S, [S,HU ]] = − 1

U
[H+

t , H−
t ]. (26)

Finally, substituting Eqs. (21), (22), (24), (25) and (26) into Eq. (18), the effective Hamil-

tonian to the order of t2 can be written as

Heff = H0
taa

+H0
tab

+H0
tba

+H0
tbb
+HU

+
1

U
[H+

taa
+H+

tab
+H+

tba
+H+

tbb
, H−

taa
+H−

tab
+H−

tba
+H−

tbb
]. (27)

In the conditions of large onsite coulomb interaction and half-filling, the term of H0
t

and HU , which are up against these conditions, are neglected. We need to calculate the last

Term of i[S,HU ] replaced by S = S  + S , becomes

i[S, HU ] = i[S , HU ] + i[S , HU ], (20)

whereas

i[S, HU ] = −(H+
t +H−

t ), (21)

and

i[S , HU ] = − 1

U
[H+

t −H−
t , H0

t ]. (22)

Moreover, we get

i[S, H+
t +H−

t +H0
t ] = i[S , H+

t +H−
t +H0

t ] + i[S , H+
t +H−

t +H0
t ]. (23)

The first term of the right-hand side which is the order of t2 can be separated into two parts

i.e.

i[S , H+
t +H−

t ] =
2

U
[H+

t , H−
t ], (24)

and

i[S , H0
t ] =

1

U
[H+

t −H−
t , H0

t ], (25)

where Eq. (25) is cancelled by Eq. (22). Moreover, the second term of the right hand side

in Eq. (23) has disappeared because it is of the order t3.

Besides, the term i2

2
[S, [S, HU ]] can be written as

i2

2
[S, [S,HU ]] = − 1

U
[H+

t , H−
t ]. (26)

Finally, substituting Eqs. (21), (22), (24), (25) and (26) into Eq. (18), the effective Hamil-

tonian to the order of t2 can be written as

Heff = H0
taa

+H0
tab

+H0
tba

+H0
tbb
+HU

+
1

U
[H+

taa
+H+

tab
+H+

tba
+H+

tbb
, H−

taa
+H−

tab
+H−

tba
+H−

tbb
]. (27)

In the conditions of large onsite coulomb interaction and half-filling, the term of H0
t

and HU , which are up against these conditions, are neglected. We need to calculate the lastterm on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as

H+
t = H+

taa
+H+

tab
+H+

tba
+H+

tbb
, (29)

H+
t = − 

<ij>


σ

{tσση(σ)(X
d←−σ
i X0←σ

j +Xd←−σ
j X0←σ

i )

+ tσ−σ(η(σ)X
d←−σ
i X0←−σ

j + η(−σ)Xd←σ
j X0←σ

i )}, (30)

and

H−
t = H−

taa
+H−

tab
+H−

tba
+H−

tbb
, (31)

H−
t = − 

<ij>


σ

{tσση(σ)(X
σ←0
i X−σ←d

j +Xσ←0
j X−σ←d

i )

+ tσ−σ(η(−σ)Xσ←0
i Xσ←d

j + η(σ)X−σ←0
j X−σ←d

i )}, (32)

where η(σ) is

η(σ) =





+1 if σ = a

−1 if σ = b.
(33)

The important term in the large-U limit and half-filling of Heff is 1
U
[H+

t , H−
t ] =

1
U
[H+

t H−
t − H−

t H+
t ]. Since we are interested in half filling, the Hilbert space of the ef-

fective Hamiltonian will contain only single occupied states. The H+
t H−

t term is absent

since the value of it operating on these single occupied state will be zero. So, the remaining

term which becomes the effective Hamiltonian is only H−
t H+

t . The effective Hamiltonian in

the form of Hubbard operators is written as

− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j

term on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as

H+
t = H+

taa
+H+

tab
+H+

tba
+H+

tbb
, (29)

H+
t = − 

<ij>


σ

{tσση(σ)(X
d←−σ
i X0←σ

j +Xd←−σ
j X0←σ

i )

+ tσ−σ(η(σ)X
d←−σ
i X0←−σ

j + η(−σ)Xd←σ
j X0←σ

i )}, (30)

and

H−
t = H−

taa
+H−

tab
+H−

tba
+H−

tbb
, (31)

H−
t = − 

<ij>


σ

{tσση(σ)(X
σ←0
i X−σ←d

j +Xσ←0
j X−σ←d

i )

+ tσ−σ(η(−σ)Xσ←0
i Xσ←d

j + η(σ)X−σ←0
j X−σ←d

i )}, (32)

where η(σ) is

η(σ) =





+1 if σ = a

−1 if σ = b.
(33)

The important term in the large-U limit and half-filling of Heff is 1
U
[H+

t , H−
t ] =

1
U
[H+

t H−
t − H−

t H+
t ]. Since we are interested in half filling, the Hilbert space of the ef-

fective Hamiltonian will contain only single occupied states. The H+
t H−

t term is absent

since the value of it operating on these single occupied state will be zero. So, the remaining

term which becomes the effective Hamiltonian is only H−
t H+

t . The effective Hamiltonian in

the form of Hubbard operators is written as

− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j

term on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as

H+
t = H+

taa
+H+

tab
+H+

tba
+H+

tbb
, (29)

H+
t = − 

<ij>


σ

{tσση(σ)(X
d←−σ
i X0←σ

j +Xd←−σ
j X0←σ

i )

+ tσ−σ(η(σ)X
d←−σ
i X0←−σ

j + η(−σ)Xd←σ
j X0←σ

i )}, (30)

and

H−
t = H−

taa
+H−

tab
+H−

tba
+H−

tbb
, (31)

H−
t = − 

<ij>


σ

{tσση(σ)(X
σ←0
i X−σ←d

j +Xσ←0
j X−σ←d

i )

+ tσ−σ(η(−σ)Xσ←0
i Xσ←d

j + η(σ)X−σ←0
j X−σ←d

i )}, (32)

where η(σ) is

η(σ) =





+1 if σ = a

−1 if σ = b.
(33)

The important term in the large-U limit and half-filling of Heff is 1
U
[H+

t , H−
t ] =

1
U
[H+

t H−
t − H−

t H+
t ]. Since we are interested in half filling, the Hilbert space of the ef-

fective Hamiltonian will contain only single occupied states. The H+
t H−

t term is absent

since the value of it operating on these single occupied state will be zero. So, the remaining

term which becomes the effective Hamiltonian is only H−
t H+

t . The effective Hamiltonian in

the form of Hubbard operators is written as

− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j

Term of i[S,HU ] replaced by S = S  + S , becomes

i[S, HU ] = i[S , HU ] + i[S , HU ], (20)

whereas

i[S, HU ] = −(H+
t +H−

t ), (21)

and

i[S , HU ] = − 1

U
[H+

t −H−
t , H0

t ]. (22)

Moreover, we get

i[S, H+
t +H−

t +H0
t ] = i[S , H+

t +H−
t +H0

t ] + i[S , H+
t +H−

t +H0
t ]. (23)

The first term of the right-hand side which is the order of t2 can be separated into two parts

i.e.

i[S , H+
t +H−

t ] =
2

U
[H+

t , H−
t ], (24)

and

i[S , H0
t ] =

1

U
[H+

t −H−
t , H0

t ], (25)

where Eq. (25) is cancelled by Eq. (22). Moreover, the second term of the right hand side

in Eq. (23) has disappeared because it is of the order t3.

Besides, the term i2

2
[S, [S, HU ]] can be written as

i2

2
[S, [S,HU ]] = − 1

U
[H+

t , H−
t ]. (26)

Finally, substituting Eqs. (21), (22), (24), (25) and (26) into Eq. (18), the effective Hamil-

tonian to the order of t2 can be written as

Heff = H0
taa

+H0
tab

+H0
tba

+H0
tbb
+HU

+
1

U
[H+

taa
+H+

tab
+H+

tba
+H+

tbb
, H−

taa
+H−

tab
+H−

tba
+H−

tbb
]. (27)

In the conditions of large onsite coulomb interaction and half-filling, the term of H0
t

and HU , which are up against these conditions, are neglected. We need to calculate the last

Term of i[S,HU ] replaced by S = S  + S , becomes

i[S, HU ] = i[S , HU ] + i[S , HU ], (20)

whereas

i[S, HU ] = −(H+
t +H−

t ), (21)

and

i[S , HU ] = − 1

U
[H+

t −H−
t , H0

t ]. (22)

Moreover, we get

i[S, H+
t +H−

t +H0
t ] = i[S , H+

t +H−
t +H0

t ] + i[S , H+
t +H−

t +H0
t ]. (23)

The first term of the right-hand side which is the order of t2 can be separated into two parts

i.e.

i[S , H+
t +H−

t ] =
2

U
[H+

t , H−
t ], (24)

and

i[S , H0
t ] =

1

U
[H+

t −H−
t , H0

t ], (25)

where Eq. (25) is cancelled by Eq. (22). Moreover, the second term of the right hand side

in Eq. (23) has disappeared because it is of the order t3.

Besides, the term i2

2
[S, [S, HU ]] can be written as

i2

2
[S, [S,HU ]] = − 1

U
[H+

t , H−
t ]. (26)

Finally, substituting Eqs. (21), (22), (24), (25) and (26) into Eq. (18), the effective Hamil-

tonian to the order of t2 can be written as

Heff = H0
taa

+H0
tab

+H0
tba

+H0
tbb
+HU

+
1

U
[H+

taa
+H+

tab
+H+

tba
+H+

tbb
, H−

taa
+H−

tab
+H−

tba
+H−

tbb
]. (27)

In the conditions of large onsite coulomb interaction and half-filling, the term of H0
t

and HU , which are up against these conditions, are neglected. We need to calculate the last
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term on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as

H+
t = H+

taa
+H+

tab
+H+

tba
+H+

tbb
, (29)

H+
t = − 

<ij>


σ

{tσση(σ)(X
d←−σ
i X0←σ

j +Xd←−σ
j X0←σ

i )

+ tσ−σ(η(σ)X
d←−σ
i X0←−σ

j + η(−σ)Xd←σ
j X0←σ

i )}, (30)

and

H−
t = H−

taa
+H−

tab
+H−

tba
+H−

tbb
, (31)

H−
t = − 

<ij>


σ

{tσση(σ)(X
σ←0
i X−σ←d

j +Xσ←0
j X−σ←d

i )

+ tσ−σ(η(−σ)Xσ←0
i Xσ←d

j + η(σ)X−σ←0
j X−σ←d

i )}, (32)

where η(σ) is

η(σ) =





+1 if σ = a

−1 if σ = b.
(33)

The important term in the large-U limit and half-filling of Heff is 1
U
[H+

t , H−
t ] =

1
U
[H+

t H−
t − H−

t H+
t ]. Since we are interested in half filling, the Hilbert space of the ef-

fective Hamiltonian will contain only single occupied states. The H+
t H−

t term is absent

since the value of it operating on these single occupied state will be zero. So, the remaining

term which becomes the effective Hamiltonian is only H−
t H+

t . The effective Hamiltonian in

the form of Hubbard operators is written as

− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j

term on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as

H+
t = H+

taa
+H+

tab
+H+

tba
+H+

tbb
, (29)

H+
t = − 

<ij>


σ

{tσση(σ)(X
d←−σ
i X0←σ

j +Xd←−σ
j X0←σ

i )

+ tσ−σ(η(σ)X
d←−σ
i X0←−σ

j + η(−σ)Xd←σ
j X0←σ

i )}, (30)

and

H−
t = H−

taa
+H−

tab
+H−

tba
+H−

tbb
, (31)

H−
t = − 

<ij>


σ

{tσση(σ)(X
σ←0
i X−σ←d

j +Xσ←0
j X−σ←d

i )

+ tσ−σ(η(−σ)Xσ←0
i Xσ←d

j + η(σ)X−σ←0
j X−σ←d

i )}, (32)

where η(σ) is

η(σ) =





+1 if σ = a

−1 if σ = b.
(33)

The important term in the large-U limit and half-filling of Heff is 1
U
[H+

t , H−
t ] =

1
U
[H+

t H−
t − H−

t H+
t ]. Since we are interested in half filling, the Hilbert space of the ef-

fective Hamiltonian will contain only single occupied states. The H+
t H−

t term is absent

since the value of it operating on these single occupied state will be zero. So, the remaining

term which becomes the effective Hamiltonian is only H−
t H+

t . The effective Hamiltonian in

the form of Hubbard operators is written as

− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j

term on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as
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Using the pseudo-spin operators, the effective Hamiltonian becomes

Heff =


<ij>

{ 2
U
(t2aa + t2bb)(τ̂

z
i τ̂ z

j −
n̂in̂j

4
)− 2(t2ab + t2ba)

U
(τ̂ z

i τ̂ z
j +

n̂in̂j

4
)

+
2tabtba

U
(τ̂+i τ̂+j + τ̂−i τ̂−j ) +

2taatbb
U

(τ̂+i τ̂−j + τ̂−i τ̂+j )

+ 2(
taatab

U
− tbbtba

U
)(τ̂ z

i τ̂+j + τ̂ z
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n̂i = c†iacia + c†ibcib. (36)
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Conclusion

We have derived the effective Hamiltonian in the limits of half filling and large onsite

coulomb interactions from the spinless orbital Hubbard model. The canonical transforma-

tion has been used to separate the high energy states from the low energy states. As a result,

term on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as
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j +Xd←−σ
j X0←σ
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η(σ) =
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


+1 if σ = a

−1 if σ = b.
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[H+

t , H−
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t H−
t − H−

t H+
t ]. Since we are interested in half filling, the Hilbert space of the ef-

fective Hamiltonian will contain only single occupied states. The H+
t H−

t term is absent

since the value of it operating on these single occupied state will be zero. So, the remaining

term which becomes the effective Hamiltonian is only H−
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t . The effective Hamiltonian in
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− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j

term on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as

H+
t = H+

taa
+H+

tab
+H+

tba
+H+

tbb
, (29)

H+
t = − 

<ij>


σ

{tσση(σ)(X
d←−σ
i X0←σ

j +Xd←−σ
j X0←σ

i )

+ tσ−σ(η(σ)X
d←−σ
i X0←−σ

j + η(−σ)Xd←σ
j X0←σ

i )}, (30)

and

H−
t = H−

taa
+H−

tab
+H−

tba
+H−

tbb
, (31)

H−
t = − 

<ij>


σ

{tσση(σ)(X
σ←0
i X−σ←d

j +Xσ←0
j X−σ←d

i )

+ tσ−σ(η(−σ)Xσ←0
i Xσ←d

j + η(σ)X−σ←0
j X−σ←d

i )}, (32)

where η(σ) is

η(σ) =





+1 if σ = a

−1 if σ = b.
(33)

The important term in the large-U limit and half-filling of Heff is 1
U
[H+

t , H−
t ] =

1
U
[H+

t H−
t − H−

t H+
t ]. Since we are interested in half filling, the Hilbert space of the ef-

fective Hamiltonian will contain only single occupied states. The H+
t H−

t term is absent

since the value of it operating on these single occupied state will be zero. So, the remaining

term which becomes the effective Hamiltonian is only H−
t H+

t . The effective Hamiltonian in

the form of Hubbard operators is written as

− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j

term on the right hand side of equation (27). For convenience, the suitable tool so-called

the Hubbard operators [15] will be used for this calculation. The hopping process that take

electron from orbital a to orbital b on the same site j is written as

Xb←a
j = |bjj a| . (28)

Using this notation, the last terms in equation (27) are written as

H+
t = H+

taa
+H+

tab
+H+

tba
+H+

tbb
, (29)

H+
t = − 

<ij>


σ

{tσση(σ)(X
d←−σ
i X0←σ

j +Xd←−σ
j X0←σ

i )

+ tσ−σ(η(σ)X
d←−σ
i X0←−σ

j + η(−σ)Xd←σ
j X0←σ

i )}, (30)

and

H−
t = H−

taa
+H−

tab
+H−

tba
+H−

tbb
, (31)

H−
t = − 

<ij>


σ

{tσση(σ)(X
σ←0
i X−σ←d

j +Xσ←0
j X−σ←d

i )

+ tσ−σ(η(−σ)Xσ←0
i Xσ←d

j + η(σ)X−σ←0
j X−σ←d

i )}, (32)

where η(σ) is

η(σ) =





+1 if σ = a

−1 if σ = b.
(33)

The important term in the large-U limit and half-filling of Heff is 1
U
[H+

t , H−
t ] =

1
U
[H+

t H−
t − H−

t H+
t ]. Since we are interested in half filling, the Hilbert space of the ef-

fective Hamiltonian will contain only single occupied states. The H+
t H−

t term is absent

since the value of it operating on these single occupied state will be zero. So, the remaining

term which becomes the effective Hamiltonian is only H−
t H+

t . The effective Hamiltonian in

the form of Hubbard operators is written as

− 1

U
H−

t H+
t =



<ij>

{−
σ

t2σσ

U
X−σ←−σ

i Xσ←σ
j +


σ

tσσtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

tσ−σtσσ

U
X−σ←−σ

i X−σ←σ
j +


σ

t2σ−σ

U
X−σ←σ

i X−σ←σ
j



SWU  Sci. J. Vol. 22 No. 2 (2006)

96
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Using the pseudo-spin operators, the effective Hamiltonian becomes

Heff =
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4
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U
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j + τ̂−i τ̂ z
j )}, (35)

where τ̂ z
i(j), τ̂+i(j) and τ̂−i(j) are the pseudo-spin operators at site i(j) defined by

τ̂ z =
1

2
(c†iacia − c†ibcib),

τ̂+ = c†iacib,

τ̂− = c†ibcia,

n̂i = c†iacia + c†ibcib. (36)
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U
X−σ←σ

i Xσ←−σ
j −

σ

t−σ−σtσ−σ

U
X−σ←σ

i Xσ←σ
j

− 
σ

t−σσtσσ

U
X−σ←σ

i X−σ←−σ
j +


σ

t−σσtσ−σ

U
X−σ←σ

i X−σ←σ
j }. (34)

Using the pseudo-spin operators, the effective Hamiltonian becomes

Heff =


<ij>

{ 2
U
(t2aa + t2bb)(τ̂

z
i τ̂ z

j −
n̂in̂j

4
)− 2(t2ab + t2ba)

U
(τ̂ z

i τ̂ z
j +

n̂in̂j

4
)

+
2tabtba

U
(τ̂+i τ̂+j + τ̂−i τ̂−j ) +

2taatbb
U

(τ̂+i τ̂−j + τ̂−i τ̂+j )

+ 2(
taatab

U
− tbbtba

U
)(τ̂ z

i τ̂+j + τ̂ z
i τ̂−j )

+ 2(
taatba

U
− tbbtab

U
)(τ̂+i τ̂ z

j + τ̂−i τ̂ z
j )}, (35)

where τ̂ z
i(j), τ̂+i(j) and τ̂−i(j) are the pseudo-spin operators at site i(j) defined by

τ̂ z =
1

2
(c†iacia − c†ibcib),

τ̂+ = c†iacib,

τ̂− = c†ibcia,

n̂i = c†iacia + c†ibcib. (36)

Conclusion

We have derived the effective Hamiltonian in the limits of half filling and large onsite

coulomb interactions from the spinless orbital Hubbard model. The canonical transforma-

tion has been used to separate the high energy states from the low energy states. As a result,
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