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ABSTRACT 

The ability of photoreagent to target and photocleave the protein backbone at a single 
site has been a considerable challenge for over decades. The structure of the photoreagent can be 
systematically modified to provide valuable information on the binding site recognition and 
photoreaction mechanisms. Many factors, for example, functional groups and overall charge present 
on the probe, conformations of the bound probe, protein size and amino acids present at the binding 
site, can affect the photocleavage reaction. A variety of spectroscopic methods (absorption, 
fluorescence and circular dichroism spectroscopies) were used to monitor the binding interaction. 
Peptide bond cleavage reactions were obtained from irradiation, at the probe absorption wavelength 
(~340 nm), of the probe/protein mixture, in the presence of an electron sink. The mechanism 
indicated the important role of aromatic cation radicals in the mechanistic path as obtained from 
laser flash photolysis studies. Computer docking studies can be used to provide strong support for 
the photocleavage and sequencing studies. The docked structures indicated the location of the probe 
in good proximity to the obtained cleavage site. In this short review, we focused mainly on few 
generic proteins, such as serum albumin, lysozyme and avidin. However, this strategy may be 
extended to other proteins with appropriate modifications, which could be useful in a rational design 
of novel photoreagents to target desired sites on proteins in future studies. 
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Introduction 
Proteins are made of a sequence of amino acids connected via peptide bonds and this 

sequence is important in defining the chemical and biochemical properties of proteins. Establishing 
this sequence of amino acids in a given protein is of fundamental importance in protein 
biochemistry.  With the discovery of large numbers of new proteins on a daily basis makes this task 
even more challenging and mass spectrometry is a powerful that is being employed in the study of 
the structures of these proteins (proteomics) [1]. Despite the overwhelming power of mass 
spectrometry, sequencing a large protein is still a major challenge and conversion of such large 
proteins to smaller fragments that are more amenable for analysis by mass spectrometry is an 
important need. This task of converting large proteins into smaller fragments is routinely achieved 
using enzymes such as peptidases [2] or chemical reagents such as cyanogen bromide [3]. However, 
these approaches for making a set of peptides from a large protein have serious limitations [4]. To 
meet this challenge, photochemical reagents that cleave proteins upon activation with light were 
designed and tested in our group, nearly two decades ago and success with this approach has 
continued to nourish our work to the current day. The initial approach also included inorganic 
photoreagents which also demonstrated specificity or high selectivity with yields approaching 60% 
[5].  

In this short review, a couple of examples are taken from our published work and the 
rational approach used as well as the results obtained have been analyzed from a different 
perspective. One interesting feature of these artificial photo proteases was that the daughter 
fragments were amenable to standard biochemical sequencing methods to identify the residues where 
the original protein has been cleaved [6]. Thus, mass spectral sequencing of the peptides can be 
connected readily to construct the original protein sequence. Thus, a photocleavage reagent needs to 
full fill a number of requirements for its utility for protein sequencing studies.  

In addition to protein sequencing studies, the above photoreagents could also be useful 
for identifying biological interfaces. For example, when a protein binds to a solid surface some of its 
residues are buried at the protein-solid interface and may not be accessible for interactions with the 
reagent. Thus, the residues at this interface can be readily identified when the photocleavage patterns 
of the protein in solution are compared with the photocleavage patterns when the protein is bound to 
the solid. Identifying such interfaces is a major unmet challenge in biology. This understanding could 
be important to manipulate and control biological processes in the condensed phases, at room 
temperature, as in cell communication, cell adhesion, cell motion, gene expression/regulation, and 
other key biological phenomenon [7]. 
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The purpose of using the amino acids in the probe design is three-fold: (1) adopt a well 
known synthetic strategy to prepare a number of derivatives of the photoprobe so that a structure-
activity correlations can be sought; (2) the amino acid residue can provide a chiral center and 
thereby providing opportunities to examine the chiral discrimination provided by the protein 
environment for improved control over the selectivity for binding and subsequent photocleavage, and 
(3) the amino acids of the probe might interact favorably with the amino acids of the protein 
backbone and this interaction might promote the binding affinities of the probes. The data, obtained 
thus far, appear to support these expectations. Thus, a number of different amino acids were coupled 
with the pyrenyl chromophore and the corresponding photoprobes are shown in Scheme 3. 

 

Results 
Absorption titrations 
Prior to conducting the photocleavage reaction, one needs to make sure that the 

photoprobe has certain affinity for the target protein and also evaluate the number of binding sites 
that the probe might reside at. Very weak binding affinities would imply that the probe would 
mostly reside in the solvent and any reactive intermediates generated by light activation would then 
shower the protein with these.  Such a situation might result in protein crosslinking rather than 
desired cleavage of the peptide backbone of the target protein.  On the other hand, strong to 
moderate binding of the photoprobe with the target protein would ensure that the reagent is more 
likely to be localized on the protein and hence, any derived chemistry would be directed at particular 
sites on the protein. This latter result could produce specific cleavage patterns near the probe binding 
site and hence, this pattern could be controlled by adjusting the probe structure in a rational manner 
to target different sites on the protein. 
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The decrease in the free energy of the ground state (HOMO) is due to binding of the 
probe to the protein where the protein matrix replaces the solvent around the chromophore, while the 
decrease in the free energy of the excited state (LUMO) is also due to the solubilization of the 
excited state by the protein matrix. Note that the stabilization of the HOMO is less than the 

stabilization of the LUMO and hence hν > hν', the concomitant red shift in the absorption spectrum 
much greater than that of the ground state. Thus, greater stabilization of the excited state by the 
protein when compared to that of the ground state which resulted in the red-shift of the absorption 
spectrum implies that the protein interior is more conducive to the excited state than to the ground 
state.  There would have been a blue shift, if the opposite has been true.  

Thus, one should not conclude that there is no binding if there is no shift in the 
absorption spectrum when a probe is titrated into the protein solution. That could be true but if both 
HOMO and LUMO are stabilized or destabilized to the same extent, then there would be no change 
in the energy gap between the HOMO and LUMO. Hence, there will be no shift in the absorption 
peak position. This scenario can happen and so, the absorption titration data are to be interpreted 
more carefully.  Nevertheless, one important and unexpected dividend from the above treatments is 
the possibility for the direct assessment of the binding free energy of the probe with the protein, 
from simply analyzing the above absorption data and the peak positions. 

The peak absorption wavelengths are to be first converted into the corresponding 
frequencies (energy units) and the red shift is to be obtained. Then, one can estimate the binding free 
energy as given by equation 1, deduced from the energy equality argument explained above. 

ΔGbinding = ΔGred-shift + h(ν'- ν)........ equation 1 

The important assumption made in the above equation is that the electronic transition is 
between the same states in the free probe and the bound probe. If this is not true, then appropriate 
corrections need to be made. Secondly, one can use equation 1 for all the vibrational bands observed 
in the absorption spectrum and hence, multiple measurements of binding free energy is possible, 
from a single set of absorption titrations. Thus, a more accurate, average value for the binding free 
energy can be obtained without a calorimeter. In addition, we need not assume that there is an 
equilibrium between the bound and free probes, only that we need to ensure complete binding occurs 
so that there is no free probe in the final solution of the titration. By adding excess protein, one can 
often capture all the free probe and convert to the bound probe so that its absorption spectrum could 
be obtained more reliably. 
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Binding Isotherms 
In addition to the above spectral analysis, the absorption and emission titration data are 

generally analyzed using Scatchard [12] model to extract binding constants and the number of 
binding sites on the protein. This model assumes that the binding is discrete or that binding to one 
site does not influence binding to another site on the same protein molecule. This is called the non-
cooperative binding. Secondly, binding is assumed to be reversible and the data are obtained under 
equilibrium conditions so that the binding constant is calculated based on the chemical equilibrium 
established during the binding event. Each protein molecule is assumed to have a finite number of 
non-interacting binding sites for a given ligand. The number of binding sites are thus, expected to be 
integral numbers and when n > 1, the binding sites do not overlap with each other.  With these 
assumptions, the Scatchard equation is written as in equation 3. 

r/Cfree = Kb (n-r) where r = Cbound/[Protein] ....... equation 3 

There are a few terms in equation that need to be identified and they are, the number of 
binding sites (n, unitless) per protein molecule that are identical and non-overlapping, the binding 
constant (Kb, units of M

-1) and the binding density (r, dimension less) which is defined as the ratio 
of total ligand bound (molar) per total protein (molar) available for binding.  

One last thing to discuss is how to estimate the above quantities from the experimental 
data. For example, the concentration of the total protein is directly obtained from the titration data, 
after appropriate correction to the changes in the total volume, as the titration progressed. The other 
is the concentration of the ligand bound at each concentration of the ligand added to the titration. 
Usually this is obtained from the extinction coefficients of the bound and free ligands at the 
wavelength of analysis and the total absorbance of the sample at that wavelength.  

The total absorbance measured at any wavelength is the sum of the absorbances of the 
free and bound ligands at that wavelength. These absorbances are, in turn, equal to the concentration 
of the corresponding probe (free or bound) multiplied by their molar extinction coefficients. One also 
has the relation that the total ligand concentration is equal to the sum of the concentrations of the 
free and bound ligands, at each protein concentration. Using these equations, one transforms the 
above Scatchard equation in terms of absorbances or directly calculates the concentrations of the free 
and bound ligands at each of the protein concentrations.  The extinction coefficient of the bound 
ligand at the wavelength of analysis is obtained by adding excess protein to the ligand solution such 
that the ligand is completely consumed by the protein. Or this is also obtained by plotting the 
observed absorbance of the sample at the wavelength of analysis vs inverse of the protein 
concentration. By extrapolation of this plot to infinite concentration of the probe, one obtains the Y-
axis intercept which gives the absorbance of the fully bound probe and from this, one obtains its 
extinction coefficient.  Either way, one obtains a set of r and ligand concentrations and obtains the 
Scatchard plot shown in Figure 3. 
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Conclusion and Discussion 
A number of small organic molecules have been designed, synthesized and tested for 

their binding to proteins which indicated several examples where the photoreaction can be 
successfully induced. The binding affinities, however, depended on probe structure in a complex 
manner, and could not be rationalized by any simple binding model. While their affinities differed, 
they all responded substantially on binding to the protein, in terms of their photophysical properties.  
Protein binding resulted in substantial changes in the absorption and fluorescence spectra and the 
data have been quantified using Scatchard equation.  In all the cases examined here, except for Py-
Phe/BSA, all systems indicated a single binding site with moderate to high affinities. Binding to the 
protein also buried the chromophore in the protein matrix and its access to the solvent was 
successfully probed in fluorescence quenching studies with CoHA.  Furthermore, the degree of 
protection offered by the protein against quenching with CoHA correlated inversely with the yield of 
the photocleavage reactions.  Thus, some access to the bound chromophore was essential to initiate 
the photoreaction.  

The newly created N-terminus of the photoproduct was amenable to conventional 
sequencing studies, which is an important result with ramifications about the application of these 
photoreagents in biochemical studies. However, the newly created C-terminus was not sequencible 
but these constrained helped us in narrowing down the possible mechanistic schemes that could be 
devised. Another significant observation was that many of the photoreagents shared the same 
cleavage site on BSA and lysozyme, with some exceptions. This could be because they all had the 
large hydrophobic pyrenyl group but the side chain played an important role.  Longer chains allowed 
the probe to access residues that are farther and new cleavage sites were noted.  Along the same 
lines, the attachment of biotin in the side chain allowed Py-Biotin to be directed to the biotin binding 
site and this is likely due to the high affinity of biotin to its binding site on avidin.   

Computer docking studies provided strong support for the photocleavage and 
sequenching studies.  The docked structures indicated good proximity of the photoreagent to the 
observed cleavage site and the experimental data have validated the success of the computer 
modeling.  In future studies, computer modeling may be used in an iterative manner, to target 
specific sites on a given protein target.  We are not there yet, but with increased computational 
power and availability of reliable and sophisticated algorithms should make this a viable strategy to 
photocleave proteins at desired sites. 

In summary, the photoreagent design should consider several factors, such as potential 
binding site on the target protein, desired structural features of the photoreagent to bind at the 
binding site and the excited state properties.  The excited state need to live long enough to induce 
the desired reaction at the protein binding site but it also should have the necessary chemical 
reactivity.  CoHA played an important role in the examples presented here, where it generated a long 
lived radical intermediate from the pyrenyl chromophore, which successfully induced the 
photocleavage of the protein backbone.   
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