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บทคัดยอ  
วัตถุประสงค: เพ่ือศึกษากลไกระดับโมเลกุลในการจับกันและความเฉพาะเจาะจง
ระหวางเอนไซม COX-1 และ COX-2 กับสารจากธรรมชาติ 12 ชนิดที่มีฤทธิ์เปน
สารตานอักเสบโดยเทคนิค in silico วิธีการศึกษา: ใชโปรแกรม AutoDock 4.2 

ในการคํานวณคาพลังงานอิสระที่เกิดจากอันตรกิริยาที่สารจับกับเปาหมาย (ΔGb) 
และคาคงที่ของความสามารถในการยับย้ัง(Ki) ในการศึกษานี้ใชคาคงที่ของ
ความสามารถในการยับย้ังทํานายดัชนีความเฉพาะเจาะจงของสารแตละชนิด

(อัตราสวนระหวาง COX-2 Ki และ COX-1 Ki) ผลการศึกษา: γ-Mangostin มี
ดัชนีความเฉพาะเจาะจงเทากับ 0.0269 เทียบเทากับ rofecoxib (0.0407) ดัชนี
ความเฉพาะเจาะจงของ gingerol, [8]-paradol, isorhapontigenin และ 
rutaecarpine อยูในชวง 0.2 - 0.5 ซ่ึงอาจจัดเปน preferential COX-2 inhibitor 
สรุป: จากการศึกษากลไกการจับกันและความเฉพาะเจาะจงระหวางเอนไซม 
COX-1 และ COX-2 กับสารจากธรรมชาติ 12 ชนิดที่มีฤทธิ์เปนสารตานอักเสบให
ขอมูลอันตรกิริยาระหวางเอนไซมและตัวยับย้ังและดัชนีความเฉพาะเจาะจงที่นาจะ
เปนประโยชนในการออกแบบยาตานอักเสบที่มีโครงสรางแบบใหมและมีความ
ปลอดภัย 

คําสําคัญ: docking, ตัวยับย้ัง COX-2 แบบเฉพาะเจาะจง, สารจากธรรมชาติ, 
AutoDock 

 

 

Abstract 

Objective: To investigate the binding modes and molecular selectivity on 
COX-1 and COX-2 enzymes of 12 natural product-derived compounds 
reported as anti-inflammatory agents using in silico prediction. Method: 
AutoDock 4.2 was employed to determine the free energy of binding (ΔGb) 
and inhibition constants (Ki). The evaluated inhibition constant (Ki) from 
docking result was used to estimate the calculated selectivity index (ratio of 

COX-2 Ki to COX-1 Ki of each compound). Results: γ-Mangostin gained 
the lowest calculated selectivity index (0.0269) comparable to rofecoxib 
(0.0407). The calculated selectivity indices of gingerol, [8]-paradol, 
isorhapontigenin and rutaecarpine were in a range of 0.2-0.5 that could be 
defined as preferential COX-2 inhibitors. Conclusion: Binding modes and 
molecular selectivity of 12 natural product-derived compounds reported as 
anti-inflammatory agents were determined. This information from the 
inhibitor-enzyme interactions and calculated selectivity indices could be 
useful in designing NSAIDs with new scaffold and favorable safety profile.  

Keywords: docking, COX-2 selective inhibitors, natural product-derived 
compounds, Autodock  

 

Introduction
Prostaglandins (PGs) are involved in many important 

physiological functions including inflammation, pain, body 
temperature, as well as maintenance of gastric, renal and 
hematic systems.1 The major enzymes responsible for the 
synthesis of PGs from their precursor, arachinodic acid, are 
cyclooxygenases (COXs) which have been identified into two 
isoforms, known as COX-1 and COX-2.2,3 The constitutive 
COX-1 isoform is expressed in cells and normal tissues 
physiological functions (gastro-protection and keeping 
vascular and renal homeostasis). The inducible COX-2 is 
induced by mediators of inflammation in pathological 
conditions. Inhibition of both COX-1 and COX-2 enzymes 
with non-selective inhibitors lead to renal and gastro-
intestinal side effects due to inhibition of COX-1.4,5 
Accordingly, the selective COX-2 inhibitors have been 
designed and developed based on the approach that they 

might have superior therapeutic action similar to non-
selective inhibitors with reduced adverse effects.6 The first 
selective COX-2 inhibitor, celecoxib(7), was launched in 1999 
followed by rofecoxib8, valdecoxib9, parecoxib10, etoricoxib11 
and lumiracoxib12. However, rofecoxib has been withdrawn 
from the market because its long-term treatment can 
increase the risk of serious thromboembolic events including 
myocardial infarction and valdecoxib has been withdrawn for 
serious cutaneous adverse reactions.13,14 Recent reports 
demonstrated that selective COX-2 inhibitors may tip the 
balance between prothrombotic (TxA2) and anti-prothrombo-
tic prostraglandin (PGI2) potentially increasing the possibility 
of a thrombotic cardiovascular events.15,16 Currently, the 
extensive efforts to design new safer selective COX-2 
inhibitors with different scaffold from the current ones are in 
the great deal of interest. The use of traditional medicine for 
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a relief from pain and inflammation has been reported for 
very long times. With their great structural diversity, these 
natural product-derived compounds are supposed to be 
devoid of severe adverse effects. With such promising 
advantages, their molecular selectivity on the target, COX-1 
and COX-2 enzymes, need to be thoroughly scrutinized.  

In this research, twelve natural product-derived 
compounds reported as anti-inflammatory agents were 
investigated for binding modes and selectivity of the 
molecules on COX-1 and COX-2 enzymes by means of 
docking studies. These natural compounds may serve as 
potential lead compounds to develop novel COX-2 selective 
inhibitors with new scaffold as safer anti-inflammatory drugs.  

 

Materials and Methods 

Preparation of Ligands  

Twelve natural product-derived compounds (structures 
shown in Figure 1) having anti-inflammatory activities were 
selected from literatures.17 The structures of all compounds 
were constructed and optimized by Sybyl 7.0 using the 
Tripos force field and Gasteiger Huckel charges. The Powell 
method was used for energy minimization with an energy 
convergence gradient of 0.001 kcal/mol. All possible flexible 
torsions of the ligand molecules were defined using AutoTor. 
The prepared ligands were used as input files for Autodock 
4.2 in the next steps.  

 
 

Preparation of receptors  

The structures of COX-1 (1CQE) and COX-2 (1CX2) 
proteins were obtained from Protein DATA BANK [Research 
Collaboratory for Structural Bioinformatics (RCSB) 
(http://www.rcsb.org\pdb)]. All bound waters and ligands 
were eliminated from the proteins. The receptor models were  
prepared with AutoDock Tools adding hydrogens and 
Kollman charges. The auxiliary program, AutoGrid generated 
the grid maps. The affinity grid maps centered on and 
encompassing the active site were calculated for the relative 
ligand atom types with 0.375 À spaced box 40 x 40 x 40 À.  

 

Docking simulations  

The docking simulations were performed using Autodock 
version 4.2 software running on Itanium cluster.18 The 
docking studies were carried out to evaluate the binding free 
energy of the inhibitors within the receptors. The GALS 
search algorithm (genetic algorithm with local search) was 
chosen to search for the best conformers. Default docking 
parameters were used with 100 independent docking runs 
for each ligand. The docking conformations of each ligand 
were clustered on the basis of root-mean-square deviation 
(RMSD) tolerance of 2.0 À and ranked on the basis of free 
energy of binding. The cluster with the lowest free energy of 
binding was visually analyzed using Discovery Studio 
Visualizer 2.5.  

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1 Structures of natural product-derived with anti-inflammatory activities.  
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The docking studies results were used to generate 
inhibitor thermodynamic properties, such as free energy of 
binding (ΔGb) and inhibition constants (Ki). The inhibition 
constant was used to estimate the calculated selectivity 
index (ratio of COX-2 Ki to COX-1 Ki of each complex). The 
experimental selectivity index was calculated from the ratio 
of COX-2 IC50 to COX-1 IC50. The correlation between 
calculated selectivity indices and experimental selectivity 
index was determined using Spearman rank correlation in 
order to demonstrate a method validation.19,20 Molecular 
volume was calculated by Gaussian 03, Revision D.01. 

 

Results and Discussions 
The Autodock docking parameters were validated to 

ensure that the ligand orientation and the position obtained 
from the docking studies represent valid reasonable binding 
modes of inhibitors. The ligands, fluribufen and SC-58 in the 
conformation found in the crystal structure of 1CQE and 
1CX2, respectively were extracted and docked back into the 
corresponding binding pocket. The results of docking 
simulation predicted the binding conformation of fluribufen for 
COX-1 enzyme and SC-58 for COX-2 enzyme with a root-
mean-square deviation (RMSD) of 0.62 and 1.51 Å 
compared with conformations from X-ray crystallographic 
studies. These were within 2.0 Å RMSD, a value typically 
used in evaluating the success of docking algorithms, 
indicating our docking methods were valid for the given 
structures. The orientation of the SC-58 found within the 
crystal structure (only carbon atoms presented in green) and 
the predicted conformation by Autodock (colored by atom 
type) shown in Figure 2a. The orientation of SC-58 from 
docking simulation was reproduced except that the p-sulfonyl 

amino group was rotated 180° and formed hydrogen 
bonding with HIS90 and ARG513 as shown in Figure 2b.  

To verify the ability of the docking method to differentiate 
selectivity of COX inhibitors, the docking calculations were 
also performed on three different classes of NSAIDs, 
including classical, preferential and selective NSAIDs. The 
classification of the three groups was defined based on their 
experimental selectivity indices (ratio of COX-2 IC50 to the 
COX-1 IC50) which were more than 1, between 1 to 0.1 and 
less than 0.1, respectively. Eleven NSAIDs were docked to 
COX-1 and COX-2 crystal structures according to the above 
docking protocol. Table 1 shows the results of docking 

experiments, estimated binding free energy (ΔGb), inhibition 
constants for each complex (Ki) and their corresponding 
experimental selectivity indices. The correlation between 
calculated selectivity indices and experimental selectivity 
index using Spearman correlation coefficient is significant (r 
= 0.827, P-value = 0.009,). These results demonstrate that 
this method was considerably robust and suitable for 
assessing the interaction and selectivity of the ligands and 
proteins.  

  

 
Figure 2 a) Orientation of the SC-58 found within the crystal 

structure (only carbon atoms presented in green) and 
the predicted conformation by Autodock (colored by 
atom type), b) The predicted binding mode of SC-58 
in the binding site of COX-2; a) and b) made by 
Discovery Studio 3.0.  

 
After being docked into the catalytic sites of COX-1 

(1CQE) and COX-2 (1CX2) enzymes, 11 out of 12 natural 
product-derived compounds with anti-inflammatory activities 
(Figure 1) were found to be docked into the active sites of 
both enzymes; while aiphanol could not display any 
conformations to bind the active site of COX-1. The 
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experimental IC50 (some data are shown as %inhibitory 
activity), calculated molecular volume and the results of 
docking experiments with these inhibitors are summarized in 
Table 2. The estimated binding free energy (ΔGb), calculated 
inhibition constants (Ki) as well as the calculated selectivity 
indices complex are shown.  

γ-Mangostin, the tetraoxygenated diprenylated xanthone 
derivative isolated from pericarp of mangosteen fruit 
(Garcinia mangostana), exhibited a good COX-2 selectivity 
comparable to rofecoxib; while gingerol, isorhapotigenin, [8]-
paradol and rutaecarpine were predicted as preferential 
COX-2 inhibitors. All five compounds play a crucial role in 

COX-2 selectivity by filling in the space called selectivity 

pocket as shown in Figure 3a-d. The docked model of γ-
mangostin in the active site of COX-2 enzyme (Figure 3a) 
revealed 5 predicted hydrogen bonds, involving the hydrogen 
bonds interactions of hydroxyl group at C-1, C-3, C-6 and C-
7 with LEU352, TYR355, ALA527 and SER530, respectively. 
Additional hydrogen bond interaction was observed between 
oxygen atom of C-1 hydroxyl group and ARG513. The 
prenylated moiety at position 8 was oriented toward a 
hydrophobic pocket comprised of TYR385, TRP387, PHE518 
and LEU352. A few hydrophobic contacts have been

 
Table 1 Experimental selectivity indices, binding free energy (ΔGb) and calculated Ki of selected NSAIDS.  

NSAIDs 
IC50 WBA*(μM) Experimental 

selectivity indices 

ΔGb(Kcal/mol) Calculated Ki (μM) Calculated  
selectivity indices COX-1 COX-2 COX-1 COX-2 COX-1 COX-2 

Ibuprofen 7.6 7.2 0.9474 -6.17 -5.93 29.89 45.24 1.5135 
Ketoprofen 0.047 2.9 61.7021 -7.52 -7.27 3.1 4.72 1.5226 
Naproxen 9.3 28 3.0108 -6.80 -6.53 10.29 16.44 1.5977 
Tolmetin 0.35 0.82 2.3429 -6.97 -6.43 7.73 19.37 2.5058 
Etodolac 12 2.2 0.1833 -5.62 -7.41 75.95 3.68 0.0485 
Meloxicam 5.7 2.1 0.3684 -6.43 -9.19 19.44 0.1843 0.0095 
Nimesulide 10 1.9 0.1900 -7.05 -7.86 6.1 1.72 0.2820 
Celecoxib 1.2 0.83 0.6917 -7.68 -8.48 2.34 0.613 0.2620 
Rofecoxib 63 0.84 0.0133 -8.28 -10.18 0.8507 0.0346 0.0407 
Valdecoxib 26.1 0.87 0.0333 -8.04 -9.93 1.27 0.0527 0.0415 
Etoricoxib 116 1.1 0.0095 -7.45 -10.57 3.48 0.0117 0.0050 

 * IC50 was obtained from references 21-22. 

 

Table 2 Estimated binding free energy (ΔGb), calculate inhibition constants (Ki) and calculated selectivity indices of natural 
product-derived compounds.  

Compounds 
IC50 (μM) 

Mol. Vol.* 
(cm3/mol) 

ΔGb(Kcal/mol) Calculated Ki (μM) Calculated 
selectivity indices COX-1 COX-2 COX-1 COX-2 COX-1 COX-2 

γ-Mangostin 0.8 2 304.04 -6.38 -8.52 20.96 0.5657 0.0269 
Gingerol - 3.7 307.49 -5.71 -6.53 65.69 16.42 0.2499 
Isohapotigenin 1.5 6.2 191.41 -6.63 -7.19 13.72 5.36 0.3906 
[8]-paradol - 3.4 269.55 -6.13 -6.68 32.32 12.76 0.3948 
Rutaecarpine 8.7 0.28 223.41 -8.36 -8.78 0.7469 0.3657 0.4896 
Catechin 80  178.44 -6.51 -6.70 16.97 12.30 0.7248 
Apigenin 65%‡  147.84 -7.11 -7.09 6.14 6.34 1.0336 
[6]-Shogaol - 2.1 243.41 -6.58 -6.49 14.90 17.39 1.1671 
Genistein 80 - 193.36 -6.83 -6.61 9.93 14.20 1.4300 
Eugenol 97%‡ - 157.75 -5.01 -4.69 213.84 362.06 1.6931 
Curcumin - 0.5 290.02 -5.08 -4.68 188.17 369.77 1.9651 
Aiphanol 1.9 9.9 270.36 N/A -4.50 N/A 1070 - 

 * Mol. Vol. = Molecular volume. 
 ‡ % Inhibition at the concentration of 1,000 μM. 
 N/A = unable to dock to the binding site.  
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observed between prenylated moiety at position 2 and 
ALA516, GLN192 and VAL523.  

Through our docking studies, gingerol, oleoresin 
principles of ginger (Zingiber officinale), showed three 
hydrogen bonds to COX-2 enzyme (Figure 3b). Two 
hydrogen interactions were formed via oxygen atom and 
hydrogen atom of phenolic hydroxyl group with ILE517 and 
GLN192, respectively. The oxygen atom of m-methoxyl 
group interacted by means of hydrogen bond with HIS90. 
The alkyl side chain was embedded in the hydrophobic 
pocket, making lipophilic contact with side chain of TRY387, 
TYP385, MET522, VAL523, GLY526 and ALA527. Another 
oleoresin from ginger, [8]-paradol, was predicted as selective 
COX-2 inhibitor with calculated selectivity index of 0.3948. Its 
conformation in the active site of COX-2 enzyme was similar 
to gingerol in figure 3b.  

The interaction observed for rutaecarpine, a major 
indoloquinazoline alkaloid isolated from Rutaceous plants 

such as Evodia rutaecarpa and Evaodia officinalis, was the 
hydrogen bond between the carbonyl oxygen and TYR385 
as shown in Figure 3c. The quinazoline ring of the 
rutaecarpine was oriented toward the apex of COX-2 active 
site and bound to TRP387, LEU384, GLY526, ALA527, 
VAL523, and LUE531 via van der Waals contacts, while the 
indole ring was close to VAL349, ARG120 and TYR355.  

Figure 3d shows the docked pose of isorhapentigenin 
bound in the active site of COX-2 that revealed six predicted 
hydrogen bonds with five amino acids, SER530, TYR385, 
MET522, HIS90 and SER353. One of the phenyl rings 
interacted with a hydrophobic pocket consisting of PHE381, 
TYR385, LEU384 and ALA527. Another phenyl ring 
accommodated in selectivity pocket surrounded by amino 
acids PHE518, ILE517, ARG513, HIS90, SER353, TYR355, 
THR94 and GLN192.  

 
 

 

Figure 3 The predicted binding conformations of a) γ-mangostin, b) gingerol, c) rutaecarpine and d) 
isorhapentigenin superimpose with celecoxib (only carbon atom presented in green in the active site 
of COX-2 (see also pdf file on the Journal website). Hydrogen bonds are shown as green dashed lines. 
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The docking studies of γ-mangostin, gingerol, [8]-
paradol, isorhapentigenin, and rutaecarpine with COX-1 
enzyme were investigated through molecular simulation. As 
seen in Figure 4, all five compounds were placed in the 
hydrophobic pocket and pointed toward the mouth of the 
COX-1 channel. They were shifted from the selectivity 
pocket due to the steric clash with the bulky amino acid 

ILE523. γ-Mangostin, isorhapentigenin, [8]-paradol, and 
gingerol formed 5, 4, 2 and 2 hydrogen bonds with COX-1, 
respectively. Rutaecarpine had no hydrogen bond interaction 
with COX-1 enzyme. The hydrogen bonds formed by these 
compounds with COX-1 were weaker than those with 

respective COX-2 complexes. It could suggest that γ-
mangostin, gingerol, isorhapontigenin, [8]-paradol and 
rutaecarpine provided more stable conformations in COX-2 
rather than COX-1.  

 

Figure 4 The predicted binding conformations of γ-mangostin 
(green), gingerol (yellow), c) rutaecarpine (purple) 
and d) isorhapentigenin (blue) in the active site of 
COX-1. (see also pdf file on the Journal website) 
Hydrogen bonds are shown as green dashed lines.  

 
The volume of the COX-2 active site is larger than that of 

COX-1 which was a result of an additional hydrophilic side 
pocket in COX-2 enzyme. This side pocket is defined by 
HIS90, the less bulky VAL523 in COX-2 (isoleucine in COX-
1) and contained ARG513 (Histidine in COX-1) at the base 
of the pocket.23 With the docking simulations showing the 
same tendency, it was indicated that compounds with 

molecular volume higher than 200 cm3/mol like γ-mangostin, 
gingerol, [8]-paradol and rutaecarpine gained lower Ki and 

were more suitable in COX-2 than COX-1. The compounds 
with molecular volume smaller than 200 cm3/mol like 
apigenin, catechin, eugenol and genistein showed higher Ki 
in COX-2 than COX-1. Curcumin and [6]-shogaol were the 
compounds with high molecular volume but were predicted 
as classical COX-2 inhibitors. These compounds could not 
adapt their conformations to fit in COX-2 enzyme probably 
due to the less flexibility of the olefinic double bonds in their 
structures. Apigenin could not bind to the active site of COX-
1. However, with its calculated Ki for COX-2 in a range of 
micromolar, it could not be classified as selective COX-2 
inhibitors either. Isorhapontigenin was predicted as 
preferential COX-2 inhibitor which was not corresponding to 
its molecular volume (191.41 cm3/mol), because of a large 
number of hydrogen bonds formed with the receptors.  

Some calculated inhibition constants (Ki) did not correlate 
with the experimental results. This inconsistency could occur 
because the experimental Kis were obtained from the 
different literature sources with variable testing methods and 
sources of the enzyme. Another factor was the 
computational process. For example, during the calculation, 
Autodock did not consider the explicit water molecules. 
However, the predicted Ki was at least correct in the order of 
ranking and magnitude.  

 

Conclusion 
Molecular docking studies of twelve natural product-

derived compounds with anti-inflammatory activities were 
carried out on COX-1 and COX-2 enzymes. AutoDock 4.2 
estimated the binding free energy (ΔGb) and inhibition 
constant (Ki) of each complex. The calculated selectivity 
index of each compound was calculated from ratio of 

estimated COX-2 Ki to estimated COX-1 Ki. γ-Mangostin 
was predicted as selective COX-2 inhibitor with calculated 
selectivity index of 0.0269 comparable to rofecoxib. Gingerol, 
isorhapontigenin, [8]-paradol, and rutaecarpine were defined 
as preferential COX-2 inhibitors with the calculated selectivity 
indeices of 0.2499, 0.3906. 0.3948, and 0.4896. This study 
suggests that number of hydrogen bonding, molecular 
volume, orientation, flexibility, and functional groups which 
can form hydrogen bond are involved in COX-2 selectivity. 
These results could be useful in designing new derivatives 
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from these compounds as potent and selective COX-2 
inhibitors with reduced toxicities. 
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