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ABSTRACT 
 A linear mixed model (LMM) with trend and spatial effects to forecast rice and cassava yields in 
Thailand is proposed. It is a modification of our previous model, which was a multivariate conditional auto 
regressive model (MCAR) for spatial time series data without trend. An MCAR is assumed to account for 
the spatial effects and a linear trend is assumed for temporal effects. A Bayesian method is adopted for 
parameter estimation via Gibbs sampling in Markov chain Monte Carlo (MCMC). The model is applied to 
the monthly spatio-temporal rice and cassava yield data, which have been extracted from the Office of 
Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. Using the mean absolute 
error criterion (MAE), the results show that the proposed model has a better performance in most provinces 
in the fitting part, and all provinces in the validation part compared to the exponential smoothing (ES) with 
trend (Holt ES) and the MCAR from our previous study. 
 
Keyword: Bayesian linear mixed models, Multivariate conditional auto regressive model (MCAR), Rice and 
cassava yields, Spatio-temporal data, Time series data 
 
1. Introduction 

Spatio-temporal time series models arise when 
data are collected across time as well as space. 
Spatio-temporal time series data can be found in 
various applications such as agriculture, 
climatology, ecology, geology, economics, and 
geography. They are usually collected in each area 
at regular intervals over a period of time. Thus the 
data analysis has to take account of the spatial 
correlations across the areas and the temporal 
correlations within each area. The Office of 
Agricultural Economics, an organization under the 
Ministry of Agriculture and Cooperatives of the 
Kingdom of Thailand, produced an annual report of 

some common agricultural product yields such as 
rice, rubber, cassava, and sugar cane, in each 
province of Thailand [1]. Those product yields and 
the study of forecasting motivated us to investigate 
and develop a proper forecasting model, which 
would be an important tool for production planning.  

There have been a large number of models for 
time series data. Naturally, most time series in 
agriculture are not at all stationary. Instead they 
exhibit various kinds of trend, such as linear, 
quadratic, or exponential trends. Reference [2] 
found that the most common trend of rice yield in 
China during the years 1979-2009 is linear growth. 
Reference [3] presented the linear trend for 
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cassava yield in Rwanda for the period 2000-2010. 
Reference [4] proposed ARIMA models to forecast 
boro rice production in Bangladesh and reference 
[5] proposed a forecasting model that can detect 
trend, seasonality, auto regression and outliers for 
vegetable prices in Thailand. For spatial data, a 
conditional auto regressive model (CAR) first 
introduced by [6] is one of the common 
approaches. Reference [7], extending the model of 
[6], proposed empirical Bayesian methods building 
from Poisson regression with random intercepts 
defined with CAR spatial correlations. Reference [8] 
extended the models of [7] to a full Bayesian setting 
for mapping the risk from a disease. Reference [9] 
used a Bayesian statistical model to forecast part 
demand time series data for Sun Microsystems, 
Inc. 

For spatio-temporal time series data, reference 
[10], using a geo-statistical approach to analyze 
yearly data, studied the spatial and temporal 
variability of attributes related to the yield and 
quality of durum wheat production. Based on 
Bayesian linear mixed models with CAR spatial 
effects, reference [11] presented spatial time series 
models for rice yield in Thailand. Reference [12] 
proposed a linear mixed model (LMM) with spatial 
effects to forecast rice and cassava yields at the 
same time in Thailand. A multivariate conditional 
auto regressive (MCAR) model is assumed to 
present the spatial effects. 

Most models for spatio-temporal time series 
data are based on generalized linear mixed models 
(GLMMs). In this paper, we apply LMM, a special 
case of the GLMMs, to model the agricultural 
product yields which are continuous data. LMM is 
commonly used when dealing with correlated data, 
due to the repeated measurements of each subject 
over time [13]. LMM allows fixed effects and spatial 

effects to be included. Recently, for complex 
models, the Bayesian approach is becoming 
increasingly popular as techniques for parameter 
estimation due to its extreme flexibility. 
Consequently, it is adopted for parameter inference 
in this paper. 

A CAR model is usually used for univariate 
spatial data, the data involving a single response 
variable. For multivariate spatial data which involve 
more than one response variable, the MCAR model 
proposed by [14] is commonly applied. An 
advantage of an MCAR model is that it can handle 
correlations between the response variables as well 
as the spatial correlations between areas. 
Reference [15] used MCAR for multivariate areal 
boundary analysis. They illustrated the methods 
using Minnesota county-level esophagus, larynx, 
and lung cancer data. 

For this study, we choose rice and cassava 
yields to be forecasted because they are major 
crops of Thailand. Rice has played a vital role in 
Thailand’s socio-economic development. It is the 
main export, and rice farming is a significant source 
of rural income. Thailand has the fifth-largest 
amount of land under rice cultivation in the world 
[16]. Rice is cultivated in about 8.93 million 
hectares of non-irrigated area, and the remaining 
4.4 million hectares is cultivated in irrigated areas. 
About 40% of the total rice production is exported 
Cassava is one of the most important economic 
crops of Thailand. It can be used in an array of 
foods or as animal feed, ethanol, flour or starch, 
and is used in baking and cooking. Thailand is the 
fourth largest cassava producer in the world; 
however, it is the world largest exporter with export 
value of over THB 29 billion per year. Thailand’s 
cassava planted area is 1.2 million hectares with a 
production yield of 26.9 million tons [1].  
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This study proposes an LMM with an MCAR 
model representing spatial effects, and a linear 
trend representing temporal effects, which is the 
extension of our previous model [12], for rice and 
cassava yields in 19 northeastern provinces of 
Thailand. Our previous model was an MCAR for 
spatial time series data without trend. 

The proposed model, MCAR with trend, was 
compared with exponential smoothing with trend 
(Holt ES) which is a popular method for the trend 
data and also compared with MCAR model without 
trend from our previous study [12]. This paper is 
organized as follows. Section 2 briefly describes 
the methodology. The application is illustrated in 
Section 3. The results of the study are presented 
in Section 4. Lastly, the discussion and conclusions 
are presented in Sections 5 and 6, respectively. 

2. Methodology 

2.1 Linear mixed model (LMM) for time series 
data 

A standard form of a linear mixed model is 
expressed as: 
௜௧ݕ  ൌ ௜௧ࢄ	

் ࢼ ൅ ௜௧ࢆ
் ௜࢈ ൅  ௜௧ (1)ߝ

  
For ݅ ൌ 1,… ,݉; ݐ ൌ 1,… , ܶ, where ݕ௜௧  is 

the ࢏௧௛ response at time ࢄ ,ݐ௜௧ are the explanatory 
variables associated with the fixed effects, ࢆ ,ࢼ௜௧ 
correspond to the explanatory variables with 
random effects, ࢈௜~ܰܯሺ૙,ࡰሻ  where ࡰ  is the 
positive definite matrix, and ߝ௜௧  are the random 
errors which are normally independent and 
identically distributed (i.i.d.), ߝ௜௧~ܰሺ0,  .ଶሻߪ

2.2 Multivariate conditional auto regressive 
model (MCAR) 

The MCAR model is described by [14] as 
follows. Let areal random effects corresponding to the 
two crop yields be ࣐ ൌ ሺ࣐ଵ

்,࣐ଶ
்ሻ where ࣐ଵ

் ൌ

ሺ∅ଵଵ, … , ∅௠ଵሻ, ࣐ଶ
் ൌ ሺ∅ଵଶ, … , ∅௠ଶሻ, and ݉ is the 

number of areal units. The bivariate spatial random 
effect ࣐ is defined as the conditional distribution, 

 

 ൬
∅௜ଵ
∅௜ଶ

൰ ห࣐ିሺ௜ଵ,௜ଶሻ~ܰ൭ቆ
∅ഥ௜ଵ
∅ഥ௜ଶ

ቇ , ሺݓ௜ା઩ሻିଵ൱ (2)  

 
where ࣐ିሺ௜ଵ,௜ଶሻ stands for the collection of all ∅௜௟ 
except ∅௜ଵ and ∅௜ଶ. Let ∅ഥ௜ଵ ൌ ∑ ௪೔೗∅೗భ

௪೔శ
௟  and ∅ഥ௜ଶ ൌ

∑ ௪೔೗∅೗మ
௪೔శ

௟ , the averages of the random effects for area 
݅’s neighbors specific to variables 1 and 2, 
respectively. It can be seen that ઩ serves as scaled 
conditional precision for ሺ∅௜ଵ, ∅௜ଶሻ, where ݓ௜ା is a 
scale parameter. 

Since ઩ is common for all areas	݅ ൌ
1, … , ݉, it controls the conditional precision for each 
pair of variables at the same site averaged over all 
areas. Letting ∑ ൌ ઩ିଵ, ଵ

௪శ
Σ 		is the conditional 

covariance matrix with ߩଵଶ ൌ
ఙభమ

√ఙభభఙమమ
 as the 

conditional correlation between ∅௜ଵ and ∅௜ଶ, 	݅ ൌ
1,… ,݉. Under the MCAR, the multivariate joint 
distribution is 

 
ሺ࣐ሻ݌  ∝ ݌ݔ݁ ቀെ

ଵ

ଶ
்࣐ሾ઩⊗ ሺࡰ௪ െࢃሻ࣐ሿቁ (3)  

 
where ઩ is 2x2 positive definite and ⊗ denotes the 
Kronecker product. ࢃ ൌ ൫ݓ௜௝൯ is a neighborhood 
matrix for areal units, which can be defined as 
 
 
 
 
 
 
 

௪ࡰ ൌ ݀݅ܽ݃ሺݓ௜ାሻ is a diagonal matrix with ሺ݅, ݅ሻ entry 
equal to ݓ௜ା ൌ ∑ ௜௝௝ݓ . 
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2.3 Bayesian models  

 A Bayesian model usually consists of 
three stages of hierarchy. At the first stage, a linear 
model is set up given fixed and random effects; at 
the second stage, the distributions of fixed and 
random effects are specified given the variance 
components; finally, at the last stage, prior 
distributions are assigned to the variance 
components. 

Reference [17] briefly described the basic 
elements of Bayesian inferences. Suppose that ࢟ 
is a vector of observations, ࢟ ൌ ሺݕଵ,… ,  ௠ሻ், andݕ	
ࣂ ,is a vector of parameters ࣂ ൌ ሺߠଵ,… ,  ௞ሻ். Letߠ	
݂ሺ࢟|ࣂሻ represent the conditional probability density 
function of ࢟ given	ࣂ, and ߨሺࣂሻ is a prior 
distribution for ࣂ. Then, the posterior probability 
density function of ࣂ is given by 

 
ሻ࢟|ࣂሺߨ  ൌ

௙ሺ࢟|ࣂሻ

௙ሺ࢟|ࣂሻగሺࣂሻௗሺࣂሻ
 (4)  

or 
ሻ࢟|ࣂሺߨ  ∝ൌ 	݂ሺ࢟|ࣂሻߨሺࣂሻ 

 
A Bayesian point estimator for a univariate 

 :is often obtained as the posterior mean ߠ
 

ሻ࢟|ߠሺܧ  ∝ ሻ࢟|ߠሺߨߠ׬   ߠ݀
 ∝ ሻߠ|ሺ݂࢟ߠ׬  (5) ߠሻ݀ߠሺߨ

 
However, maintaining and using this 

distribution often involves computing integrals 
which, for most non-trivial models, are intractable. 
Sampling algorithms based on Markov chain Monte 
Carlo (MCMC) techniques are one possible way to 
go about inference in such models. The underlying 
logic of MCMC sampling is that we can estimate 
any desired expectation by employing ergodic 
averages. That is, we can compute any statistic of 
a posterior distribution as long as we have N 

simulated samples from that distribution. 

2.4 Markov chain Monte Carlo (MCMC) 

An MCMC method is a general simulation 
method for sampling from the posterior distributions 
and computing posterior quantities of interest. The 
MCMC method samples successively from a target 
distribution. Each sample depends on the previous 
one, hence the notion of the Markov chain. A 
Markov chain is a sequence of random variables, 
ሺߠଵ, ,ଶߠ ,ଷߠ … ሻ, for which the random variable ߠ௧ 
depends on all previous ߠs only through its 
immediate predecessor ߠ௧ିଵ. The Markov chain is 
applied to sampling as a mechanism that traverses 
randomly through a target distribution without 
having any memory of where it has been. Where it 
moves next is entirely dependent on where it is 
now. Monte Carlo is mainly used to approximate an 
expectation by using the Markov chain samples. In 
the simplest version 

 
ሻ൯ߠ൫݃ሺܧ  ൌ ሻߠሺ݃׬ ߠሻ݀ߠሺߨ ≅

ଵ

௡
∑ ݃ሺߠ௧ሻ௡
௧ୀଵ  (6) 

 
where ݃ሺ∙ሻ is a function of interest and ߠ௧ are 
samples from ߨሺߠሻ. This approximates the 
expected value of ݃ሺߠሻ. Gibbs sampling is one of 
the MCMC techniques suitable to obtain samples 
from the posterior distribution. The idea in Gibbs 
sampling is to generate posterior samples by 
sweeping through each variable (or block of 
variables) to sample from its conditional distribution 
with the remaining variables fixed at their current 
values. 
   The Gibbs sampling [18-19] decomposes 
the joint posterior distribution into full conditional 
distributions for each parameter in the model and 
then samples from them. The sampler is efficient 
when the parameters are not highly dependent on 
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each other and the full conditional distributions are 
easy to sample from. It does not require an 
instrumental proposal distribution as Metropolis 
methods do. However, while deriving the 
conditional distributions can be relatively easy, it is 
not always possible to find an efficient way to 
sample from these conditional distributions. 

Suppose ࣂ ൌ ሺߠଵ,… ,  ௞ሻ் is theߠ
parameter vector, ݂ሺ࢟|ߠሻ is the likelihood, and 
 ሻ is the prior distribution. The full posteriorࣂሺߨ
conditional distribution of ݌൫ߠ௜หߠ௝, ݅ ് ݆, ࢟൯ is 
proportional to the joint posterior density; that is, 

 
,௝ߠ௜หߠ൫ߨ  ݅ ് ݆, ࢟൯ ∝ ݂ሺ࢟|ߠሻߨሺࣂሻ (7) 
  

For instance, the one-dimensional 
conditional distribution of ߠଵ given ߠ௝ ൌ ௝ߠ

∗, 2 ൑ ݆ ൑

݇, is computed as the following: 
 

,∗௝ߠଵหߠ൫ߨ  2 ൑ ݆ ൑ ݇, ࢟൯ ൌ 
 ݂ሺ࢟|ࣂ ൌ ሺߠଵ, ଶߠ

∗, … , ௞ߠ
∗ሻ்ሻߨሺࣂ ൌ ሺߠଵ, ଶߠ

∗, … , ௞ߠ
∗ሻ்ሻ (8) 

 
The Gibbs sampling works as follows: 
Step 1: Set ݐ ൌ 0, and choose an arbitrary initial 
value of ࣂ଴ ൌ ଵߠ

଴, … , ௞ߠ
଴. 

Step 2: Generate each component of ࣂ as follows: 
 draw ߠଵ

ሺ௧ାଵሻ from ߨ൫ߠଵหߠ௝
ሺ௧ሻ, … , ௞ߠ

ሺ௧ሻ, ࢟൯ 
 draw ߠଶ

ሺ௧ାଵሻ from	ߨ൫ߠଶหߠଵ
ሺ௧ሻ, ଷߠ

ሺ௧ሻ … , ௞ߠ
ሺ௧ሻ, ࢟൯ 

 . . . 
 draw ߠ௞

ሺ௧ାଵሻ from ߨ൫ߠ௞หߠଵ
ሺ௧ାଵሻ, ଶߠ

ሺ௧ାଵሻ … , ௞ିଵߠ
ሺ௧ାଵሻ, ࢟൯ 

Step 3: Set ݐ ൌ ݐ ൅ 1. If ݐ ൏ ܶ, the number of 
desired samples, return to Step 2. Otherwise, stop. 
 
3. Application 

The rice and cassava yields (Unit: Tons) in 19 
northeastern provinces of Thailand, extracted from 
the annual report of the Office of Agricultural 
Economics [1] from 2002 to 2011 (120 months), are 

used. The data are divided into 2 parts; the first 108 
months are used for model fitting and the last 12 
months are reserved for model validation. The 
proposed model which is a special case of LMM is 
applied to those data. It is expressed as follows. 

Let ݖ௜௞௧ be the agricultural yield in province 
݅, ݅ ൌ 1,… ,19, product type ݇, ݇ ൌ 1 for rice and 
݇ ൌ 2 for cassava, and month ݐ, ݐ ൌ 1,… ,120. We 
transform the data using the natural logarithmic 
function to make the data a more normal 
distribution [20]. 

 
௜௞௧ݕ  ൌ ݈݊ሺݖ௜௞௧ ൅ 1ሻ 
௜௞௧ݕ  ൌ ௞ܸ ൅ ܾ௞௧൅∅௜௞ ൅ ߚ ∗ ݐ ൅  ௜௞௧ (9)ߝ
௜௞௧ݕ  ൌ | ௞ܸ, ∅௜௞~ܰሺߤ௜௞௧,  ଶሻߪ
 
where ߤ௜௞௧ ൌ ௞ܸ ൅ ܾ௞௧ ൅ ∅௜௞ ൅ ߚ ∗  and ݐ
,௜௞௧~ܰሺ0ߝ  ଶሻ. ௞ܸ are the product type randomߪ
effects, ܾ௞௧ are random effects of representing the 
baseline of product ݇ and time ݐ,	 ∅௜௞ are the area-
product type spatial effects, ߚ ∗  are the linear ݐ
trends, and ߝ௜௞௧ are province-product type-time 
random effects. The estimated ߤ௜௞௧ are used for 
prediction. 

3.1 Model estimation 

Bayesian inference via Gibbs sampling 
MCMC in Open BUGS software [21] for parameter 
estimation is used. 

For Bayesian setting, we assume priors for 
the parameters as follows. 
 
 ௞ܸ~ܰሺ0,   ,ଶሻߪ

 

 ሺ0.005,0.005ሻ	ܽ݉݉ܽܩݒ݊ܫ	~	௩ଶߪ 
 

 ൬
∅௜ଵ
∅௜ଶ

൰ ห࣐ିሺ௜ଵ,௜ଶሻ~ܴܣܥܯ	݅݊	ሺ2ሻ 
 

 ,ሺ0.005,0.005ሻ	ܽ݉݉ܽܩݒ݊ܫ	~	ଶߪ 
 

 ܾ௞௧	~	ܰ	ሺ0, ௕ߪ
ଶሻ, 

 

௕ߪ 
ଶ	~	ܽ݉݉ܽܩݒ݊ܫ	ሺ0.005,0.005ሻ 
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3.2 Model comparison 

The proposed model is compared with the 
well-known exponential smoothing model with trend 
(Holt ES) and MCAR without trend in our previous 
model [12] using the mean absolute error (MAE) 
criterion, 

 
	ܧܣܯ  ൌ 	

∑ |௘೟|
೙
೟సభ

௡
	ൌ 	

∑ |௒೟ି௒෠೟|
೙
೟సభ

௡
 (10) 

 
where ෠ܻ௧ is the forecast value and ௧ܻ is the actual 
observation at time ݐ , and ݁௧ ൌ ௧ܻ െ ෠ܻ௧  is the 
forecast error at time ݐ. The Gibbs sampling MCMC 
is run for 11,000 iterations, with burn-in of 1,000. 
We assess the MCMC convergence of all model 
parameters by visual analysis of history and Kernel 
density plots. 
 
4.  Results 

For MCMC convergence diagnostics [22], 
visual analysis is used. The history plots for some 
estimated means are shown in Figs. 1-4 and the 
kernel density plots are shown in Figs. 5-8. The 
chains move around the parameter spaces and the 
kernel densities do not indicate multimodality or 
lumpiness. These indicate that each parameter is 
converged to a stationary density. 
  The performance of the proposed model 
compared to the Holt ES and the MCAR without 
trend, using the mean absolute error (MAE) 
criterion, is shown in Table 1 and Table 2. For rice 
yield, in the fitting part, the proposed model has a 
better performance in most provinces compared to 
the MCAR without trend model (13/19 = 68.42%) 
and in all provinces compared to the Holt ES (19/19 
= 100%). In the validation part, the proposed model 
is superior to the MCAR without trend (19/19 = 
100%) and the Holt ES (19/19 = 100%) in all 

provinces.  
For the cassava yield, in the fitting part, the 

proposed model has a better performance in most 
provinces compared to the MCAR without trend 
(10/19 = 52.63%) and the Holt ES (12/19 = 
63.16%). In the validation part, the proposed model 
is superior to the MCAR without trend (19/19 = 
100%) and the Holt ES (19/19 = 100%) in all 
provinces.   

Some of the actual and predicted values of rice 
and cassava yield are presented in Fig. 9-12 and 
Tables 3 and 4. It can be seen that the predicted 
values and the actual values have the same 
pattern. For the months with high product yield, the 
errors in the fitting part are quite large, however the 
errors in the validation part are quite small. For 
example, in Month 11, Loei province had a rice 
yield of 160,657 tons with an error of 117,178.01 
tons; in Month 58, Roi Et province had a cassava 
yield of 135,703 tons with an error of 101,046.82 
tons. In the validation part, in Month 119, Loei 
province had a rice yield of 167,147 tons with an 
error of 2,321.94 tons; in Month 117, Roi Et 
province had a cassava yield of 46,570 tons with 
an error of 1,264.97 tons. 

From the results, the proposed model is more 
effective than the comparison models for both rice 
and cassava yields. 
 
5.  Discussion 

The LMM with MCAR for spatial effects and 
linear trend for temporal effects is applied to spatio-
temporal time series data. It takes into account the 
spatial correlations following the first law of 
geography stating that “Everything is related to 
everything else, but near things are more related 
than distant things” [23]. It also accounts for the 
temporal correlations within the product type, which 
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usually occurs in time series data. The proposed 
model is quite complex, so the traditional method 
for parameter estimation, such as maximum 
likelihood, cannot be used. Therefore, a Bayesian 
method can be adopted to solve this problem. The 
proposed model is applied to the rice and cassava 
yields in Thailand. The benefit is that, in one model, 
it can predict multiple product yields in multiple 
provinces at the same time. Since the real data set 
consists of many zeros and extreme values, 
logarithmic transformation is applied in order to 
make the data more normally distributed.  Even 
though the Holt ES can detect the trend, it cannot 
work with multiple products and multiple provinces 
in one model at the same time. Moreover, it cannot 
deal with spatial correlation. Compared to the Holt 
ES and our previous MCAR without trend, the 
proposed model has a better performance in most 
provinces in the fitting part and all provinces in the 
validation part.  

The proposed model does not work very well in 
detecting extreme values. The reason is that there 
might be some outliers in the data. The limitation of 
this study is using secondary data, which causes 
problems of verification. For further study the 
proposed model can be extended to include outliers 
and seasonal components. 
 
6.  Conclusions 

 This study proposes an appropriate forecasting 
model for multivariate spatio-temporal time series 
data. The Bayesian approach using Gibbs sampling 
in MCMC for an LMM with linear trend for temporal 
effects and an MCAR for spatial effects is 
considered. The proposed model is applied to rice 
and cassava yields in 19 Northeastern provinces of 
Thailand from 2002 to 2011. Using the MAE 

criterion, the proposed model shows a better 
performance than the Holt ES and the MCAR 
without trend from our previous study in most 
provinces in the fitting part and all provinces in the 
validation part for both rice and cassava yields. The 
superiority of the proposed LMM with MCAR with 
trend is that, in one model, it can forecast several 
products in many provinces concurrently. 

 

 
Fig. 1 History plot of the estimated mean for rice 

yield in January in Loei province 
 

 
Fig. 2 History plot of the estimated mean for rice 

yield in February in Loei province 
 

 
Fig. 3 History plot of the estimated mean for 
cassava yield in January in Loei province 

 

 
Fig. 4 History plot of the estimated mean for 
cassava yield in February in Loei province 
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Fig. 5 Kernel density plot of the estimated mean 

for rice yield in January in Loei province 

 

 
Fig. 6 Kernel density plot of the estimated mean 

for rice yield in February in Loei province 

 

 
Fig. 7 Kernel density plot of the estimated mean 

for cassava yield in January in Loei 
province 

 

 
Fig. 8 Kernel density plot of the estimated mean 

for cassava yield in February in Loei 
province 

 

 
Fig. 9 Actual and predicted values of rice yield in 

Loei province 

 
Fig. 10 Actual and predicted values of rice yield 

in Sakon Nakhon province 
 

 
Fig. 11 Actual and predicted values of cassava 

yield in Roi Et province 
 

 
Fig. 12 Actual and predicted values of cassava 

yield in Nong Bua Lam Phu province 
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Table 1 Performance of the proposed trend 
MCAR, MCAR and Holt ES models for rice yield 

Province Model     MAE (Tons) 
   Fitting            Validation 

 
Loei 

Trend MCAR 7,122.83 199.32 
MCAR 43,760.09 68,576.67 
Holt ES 21,431.75 27,367.39 

 
Nong Bua Lam Phu 

Trend MCAR 16,947.32 427.38 
MCAR 32,741.48 68,987.50 
Holt ES 36,566.73 44,350.60 

 
Udon Thani 

Trend MCAR 34,883.31 767.29 
MCAR 44,974.35 68,970.00 
Holt ES 75,359.15 111,301.50 

 
Nong Khai 

Trend MCAR 28,401.47 509.40 
MCAR 34,566.30 68,716.67 
Holt ES 42,485.12 60,887.15 

 
Sakon Nakhon 

Trend MCAR 22,182.55 246.15 
MCAR 30,262.69 68,781.67 
Holt ES 74,836.55 100,763.84 

 
Nakhon Phanom 

Trend MCAR 16,975.75 1,066.15 
MCAR 34,867.41 68,503.33 
Holt ES 42,540.96 66,222.90 

 
Mukdahan 

Trend MCAR 5,708.71 176.95 
MCAR 46,269.07 68,607.50 
Holt ES 16,208.59 25,275.76 

 
Yasothon 

Trend MCAR 15,689.88 704.62 
MCAR 31,437.13 68,802.50 
Holt ES 43,974.76 64,928.48 

 
Amnat Charoen 

Trend MCAR 15,548.68 824.31 
MCAR 31,961.30 68,640.00 
Holt ES 40,232.09 55,360.44 

 
Ubon Ratchathani 

Trend MCAR 77,582.83 2,253.67 
MCAR 51,923.06 68,676.67 
Holt ES 119,794.94 188,814.72 

 
Si Sa Ket 

Trend MCAR 32,734.60 2,748.53 
MCAR 41,355.09 68,463.33 
Holt ES 113,493.36 179,994.35 

 
Surin 

Trend MCAR 55,081.40 4,704.89 
MCAR 52,275.19 68,817.50 
Holt ES 137,032.41 187,880.82 

 
Buri Ram 

Trend MCAR 52,132.21 1,066.21 
MCAR 44,746.57 68,914.17 
Holt ES 120,832.69 175,515.34 

 
Maha Sarakham 

Trend MCAR 19,460.29 799.30 
MCAR 23,225.65 69,092.50 
Holt ES 81,379.92 116,443.00 

 
Roi Et 

Trend MCAR 29,770.46 1,204.96 
MCAR 44,513.70 68,938.33 
Holt ES 121,254.18 165,547.40 

 
Kalasin 

Trend MCAR 49,998.18 1,229.87 
MCAR 32,384.81 68,933.33 
Holt ES 64,121.59 90,619.75 

 
Khon Kaen 

Trend MCAR 54,459.00 2,037.55 
MCAR 37,123.80 68,550.83 
Holt ES 91,091.59 126,403.82 

 
Chaiyaphum 

Trend MCAR 26,453.99 270.03 
MCAR 35,388.61 68,837.50 
Holt ES 52,521.49 68,769.46 

 
 Nakhon Ratchasima 

Trend MCAR 60,777.03 800.21 
MCAR 53,938.24 68,470.00 
Holt ES 124,403.46 174,326.96 

Table 2 Performance of the proposed trend MCAR, 
MCAR and Holt ES models for cassava yield 

Province Model        MAE (Tons) 
        Fitting        Validation 

 
Loei 

Trend MCAR 31,236.27 961.80 
MCAR 30,714.54 68,555.83 
Holt ES 40,759.85 51,643.56 

 
Nong Bua Lam Phu 

Trend MCAR 6,715.40 201.03 
MCAR 26,953.98 68,764.17 
Holt ES 10,273.92 11,012.26 

 
Udon Thani 

Trend MCAR 37,900.46 451.44 
MCAR 28,730.65 68,702.50 
Holt ES 31,380.85 67,017.49 

 
Nong Khai 

Trend MCAR 10,698.73 129.29 
MCAR 27,406.02 69,055.00 
Holt ES 13,787.09 9,857.80 

 
Sakon Nakhon 

Trend MCAR 14,163.45 215.49 
MCAR 26,374.17 68,630.83 
Holt ES 18,689.67 15,018.78 

 
Nakhon Phanom 

Trend MCAR 2,851.31 22.88 
MCAR 34,269.72 68,647.50 
Holt ES 3,849.55 3,785.27 

 
Mukdahan 

Trend MCAR 18,699.48 237.36 
MCAR 27,448.80 68,700.00 
Holt ES 24,197.74 31,597.77 

 
Yasothon 

Trend MCAR 9,245.33 130.87 
MCAR 26,151.85 68,680.00 
Holt ES 12,382.92 17,421.14 

 
Amnat Charoen 

Trend MCAR 6,879.14 72.49 
MCAR 27,258.70 68,700.00 
Holt ES 7,347.21 7,519.95 

 
Ubon Ratchathani 

Trend MCAR 23,904.27 837.96 
MCAR 28,071.20 68,671.67 
Holt ES 31,064.82 48,460.70 

 
Si Sa Ket 

Trend MCAR 13,928.20 518.94 
MCAR 25,591.30 68,810.83 
Holt ES 20,385.71 27,204.94 

 
Surin 

Trend MCAR 7,744.78 287.55 
MCAR 31,560.46 68,524.17 
Holt ES 9,082.64 9,596.62 

 
Buri Ram 

Trend MCAR 46,537.35 591.19 
MCAR 32,408.61 68,965.83 
Holt ES 50,476.74 50,387.92 

 
Maha Sarakham 

Trend MCAR 87,854.52 323.95 
MCAR 34,198.15 68,935.00 
Holt ES 16,972.74 19,502.47 

 
Roi Et 

Trend MCAR 27,475.63 153.98 
MCAR 35,771.02 68,890.83 
Holt ES 20,639.98 8,910.97 

 
Kalasin 

Trend MCAR 258,728.41 967.51 
MCAR 59,823.52 68,857.50 
Holt ES 54,798.61 48,533.87 

 
Khon Kaen 

Trend MCAR 187,020.45 711.12 
MCAR 38,935.28 68,656.67 
Holt ES 35,977.21 39,898.89 

 
Chaiyaphum 

Trend MCAR 273,015.43 2,028.84 
MCAR 41,492.31 68,618.33 
Holt ES 46,654.99 126,286.46 

 
Nakhon Ratchasima 

Trend MCAR 1,075,257.99 10,252.06 
MCAR 308,218.24 68,813.33 
Holt ES 229,401.12 415,007.79 
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Table 3 Actual values, predicted values, and 
absolute errors of rice in Loei and cassava in Roi 
Et in the fitting part from the proposed trend MCAR 

Month  
Rice in Loei Province (Tons) Casava in Roi Et Province (Tons) 

Actual Predicted  Abs. Error Actual Predicted Abs. Error 
1 0 34.23 34.23 37,323 56,144.94 18,821.94 
2 0 0.79 0.79 38,151 50,794.00 12,643.00 
3 0 6.33 6.33 54,678 11,150.45 43,527.55 
4 762 144.93 617.07 3,471 824.26 2,646.74 
5 0 33.08 33.08 2,452 226.57 2,225.43 
6 0 3.21 3.21 0 79.84 79.84 
7 0 0.35 0.35 764 105.94 658.06 
8 0 0.19 0.19 6,719 117.78 6,601.22 
9 0 0.31 0.31 37,546 219.72 37,326.28 

10 2,178 361.27 1,816.73 8,463 7,873.97 589.03 
11 160,657 43,478.99 117,178.01 47,418 12,553.79 34,864.21 
12 5,257 5,820.88 563.88 23,615 5,748.42 17,866.58 
13 0 27.72 27.72 7,671 18,043.35 10,372.35 
14 0 0.27 0.27 6,386 43,261.57 36,875.57 
15 0 4.22 4.22 22,934 69,662.64 46,728.64 
16 846 182.49 663.51 0 3,710.79 3,710.79 
17 0 71.02 71.02 0 304.30 304.30 
18 0 4.34 4.34 54,143 273.80 53,869.20 
19 0 0.31 0.31 69,181 257.88 68,923.12 
20 0 0.26 0.26 85,201 208.05 84,992.95 
21 0 0.18 0.18 52,821 1,078.88 51,742.12 
22 3,741 487.05 3,253.95 0 2,300.77 2,300.77 
23 147,024 45,723.05 101,300.95 10,836 1,362.02 9,473.98 
24 5,863 6,298.69 435.69 20,264 11,169.59 9,094.41 
25 0 35.69 35.69 1,304 54,011.83 52,707.83 
26 0 0.27 0.27 0 8,316.53 8,316.53 
27 0 29.70 29.70 27,006 8,559.96 18,446.04 
28 623 164.54 458.46 0 213.58 213.58 
29 0 40.41 40.41 1,788 330.11 1,457.89 
30 0 3.42 3.42 51,442 44.40 51,397.60 
31 0 0.63 0.63 100,724 132.71 100,591.29 
32 0 0.18 0.18 12,479 128.24 12,350.76 
33 0 0.23 0.23 49,133 225.50 48,907.50 
34 3,880 60.21 3,819.79 120,706 11,408.58 109,297.42 
35 123,182 43,583.17 79,598.83 70,820 9,748.91 61,071.09 
36 6,536 17,130.81 10,594.81 397 30,316.64 29,919.64 
37 0 7.17 7.17 34,690 68,229.72 33,539.72 
38 0 0.26 0.26 6,754 14,644.77 7,890.77 
39 0 2.91 2.91 2,210 2,965.20 755.20 
40 312 105.55 206.45 1,043 774.96 268.04 
41 49 141.04 92.04 0 131.50 131.50 
42 0 1.39 1.39 0 93.41 93.41 
43 0 0.27 0.27 0 202.96 202.96 
44 0 0.18 0.18 0 99.38 99.38 
45 0 0.32 0.32 11,696 837.22 10,858.78 
46 1,594 1,574.26 19.74 42,603 26,763.74 15,839.26 
47 110,682 49,149.68 61,532.32 74,760 25,669.32 49,090.68 
48 23,198 20,025.55 3,172.45 14,596 51,050.54 36,454.54 
49 0 0.42 0.42 14,399 77,264.01 62,865.01 
50 0 0.53 0.53 4,349 39,534.58 35,185.58 
51 0 32.17 32.17 17,199 47,508.54 30,309.54 
52 750 332.79 417.21 2,362 9,506.08 7,144.08 
53 21 233.47 212.47 4,626 932.31 3,693.69 
54 0 17.29 17.29 34,827 609.83 34,217.17 
55 0 0.83 0.83 56,046 893.32 55,152.68 
56 0 0.18 0.18 32,224 216.70 32,007.30 
57 0 0.32 0.32 31,496 912.92 30,583.08 
58 755 1,128.83 373.83 135,703 34,656.18 101,046.82 
59 109,244 47,894.14 61,349.86 59,337 39,584.99 19,752.01 
60 24,920 20,379.12 4,540.88 10,290 82,538.90 72,248.90 
61 0 0.61 0.61 27,105 116,019.13 88,914.13 
62 0 1.25 1.25 16,636 48,309.54 31,673.54 
63 59 84.91 25.91 3,191 38,886.52 35,695.52 
64 994 610.66 383.34 3,944 11,721.78 7,777.78 

65 84 385.93 301.93 24,201 2,502.86 21,698.14 
66 0 48.72 48.72 8,963 107.44 8,855.56 
67 0 0.68 0.68 22,372 316.91 22,055.09 
68 0 0.18 0.18 21,870 444.93 21,425.07 
69 0 0.32 0.32 24,918 8,521.83 16,396.17 
70 1,850 1,253.23 596.77 63,370 56,132.02 7,237.98 
71 126,560 48,179.06 78,380.94 34,243 87,157.02 52,914.02 
72 20,818 20,193.81 624.19 30,532 116,141.36 85,609.36 
73 0 0.57 0.57 13,577 66,383.65 52,806.65 
74 0 0.78 0.78 8,260 42,416.85 34,156.85 
75 113 158.06 45.06 6,187 28,691.82 22,504.82 
76 1,339 851.95 487.05 1,237 5,010.31 3,773.31 
77 117 626.84 509.84 0 118.16 118.16 
78 0 243.23 243.23 0 47.23 47.23 
79 0 2.24 2.24 0 149.31 149.31 
80 0 0.18 0.18 82,365 2,354.13 80,010.87 
81 0 0.32 0.32 94,638 17,202.76 77,435.24 
82 1,173 1,126.54 46.46 93,387 48,354.67 45,032.33 
83 124,043 50,513.28 73,529.72 52,208 74,125.15 21,917.15 
84 21,442 19,910.32 1,531.68 38,132 99,452.49 61,320.49 
85 0 0.56 0.56 25,036 127,530.40 102,494.40 
86 0 0.80 0.80 35,331 80,165.16 44,834.16 
87 39 140.17 101.17 38,832 61,872.16 23,040.16 
88 1,682 1,230.69 451.31 28,398 13,906.47 14,491.53 
89 109 999.73 890.73 4,377 2,285.06 2,091.94 
90 0 169.86 169.86 2,451 262.08 2,188.92 
91 0 1.88 1.88 910 311.23 598.77 
92 0 0.18 0.18 15,337 695.82 14,641.18 
93 0 0.18 0.18 15,757 4,689.60 11,067.40 
94 22,180 615.84 21,564.16 26,433 8,378.35 18,054.65 
95 113,527 52,617.54 60,909.46 25,648 24,047.10 1,600.90 
96 12,774 19,481.98 6,707.98 10,259 36,315.80 26,056.80 
97 0 1.14 1.14 58,429 65,041.76 6,612.76 
98 0 1.45 1.45 1,844 71,484.40 69,640.40 
99 83 349.26 266.26 0 30,031.44 30,031.44 

100 1,715 2,590.62 875.62 4,168 7,391.84 3,223.84 
101 438 2,473.77 2,035.77 19,236 1,877.30 17,358.70 
102 0 804.32 804.32 12,824 169.72 12,654.28 
103 0 3.84 3.84 1,363 229.79 1,133.21 
104 0 0.18 0.18 0 268.81 268.81 
105 0 0.18 0.18 3,847 173.00 3,674.00 
106 6,656 861.28 5,794.72 46,071 8,999.83 37,071.17 
107 118,841 63,186.77 55,654.23 5,326 26,971.70 21,645.70 
108 25,087 28,774.50 3,687.50 171 13,193.70 13,022.70 

MAE     7,122.83     27,475.63 

 

Table 4 Actual values, predicted values, and 
absolute errors of rice in Loei and cassava in Roi 
Et in the validation part from the proposed trend 
MCAR 

Month  
Rice in Loei Province (Tons) Casava in Roi Et Province (Tons) 

Actual Predicted  Abs. Error Actual Predicted Abs. Error 
109 0 0.98 0.98 482 472.67 9.33 
110 0 1.00 1.00 2,782 2,711.28 70.72 
111 31 30.35 0.65 0 1.00 1.00 
112 1,517 1,484.76 32.24 370 364.87 5.13 
113 408 404.14 3.86 16,965 17,205.88 240.88 
114 0 1.01 1.01 4,271 4,255.31 15.69 
115 0 0.95 0.95 13,758 13,832.59 74.59 
116 0 1.03 1.03 8,290 8,127.56 162.44 
117 0 1.02 1.02 46,570 45,305.03 1,264.97 
118 1,313 1,295.64 17.36 0 1.01 1.01 
119 167,147 169,468.94 2,321.94 0 1.01 1.01 
120 460 450.15 9.85 0 1.02 1.02 

MAE     199.32     153.98 
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