Coexistent human immunodeficiency virus infection and systemic lupus erythrematosus: case report

Somporn Wongamorntham, M.D.*

Abstract Human immunodeficiency virus infection (HIV) manifests a variety of clinical features resembling systemic lupus erythrematosus (SLE), and must be distinguished from one another. HIV infection in SLE is rare and it has been suggested that the coexcistence of HIV infection may ameliorate SLE activity. We report a case of SLE complicated by HIV infection. During 15 weeks of pregnancy, her SLE activity exacerbated and was found to be co-infected with HIV. The pregnancy was terminated. Over 5 years of follow up, her SLE coexisting with HIV infection has been quiescent without any immunosuppressive drugs and she has not had any opportunistic infections from HIV infection.

บทคัดย่อ

การติดเชื้อไวรัสภูมิคุ้มกันบกพร่องในผู้ป่วยเอสแอลอื

สมพร วงศ์อบรธรรม พบ.*

อาการแสดงทางคลินิกในผู้ป่วยติดเชื้อไวรัสภูมิคุ้มกันบกพร่อง (HIV) สามารถให้ อาการได้คล้ายคลึงกับโรคเอสแอลอี (SLE) จำเป็นต้องให้การวินิจฉัยแยกโรคจากกัน อุบัติ การณ์การเกิดการติดเชื้อไวรัสภูมิคุ้มกันบกพร่องในผู้ป่วยเอสแอลอีพบได้ไม่บ่อยแต่เมื่อ เกิดขึ้นพบว่าไวรัสภูมิคุ้มกันบกพร่องทำให้ความรุนแรงของโรคเอสแอลอีลดลง ได้รายงาน ผู้ป่วยหญิง 1 ราย หลังการวินิจฉัยว่าเป็นโรคเอสแอลอี 3 ปี ขณะตั้งครรภ์ 15 สัปดาห์ มีอาการของโรคเอสแอลอีรุนแรงขึ้นร่วมกับตรวจพบมีการติดเชื้อไวรัสภูมิคุ้มกันบกพร่อง หลังยุติการตั้งครรภ์ อาการของโรคเอสแอลอีที่มีการติดเชื้อไวรัสภูมิคุ้มกันบกพร่อง โดยไม่ต้องควบคุมโดยยากดภูมิต้านทาน หลังการติดตาม 5 ปีไม่พบอาการของโรคเอสแอลอี และการติดเชื้อฉวยโอกาสจากการดิดเชื้อไวรัสภูมิคุ้มกันบกพร่อง

(MJS 2000 ; 1 : 28 - 34)

^{*} Division of Nephrology, Department of Medicine, Faculty of Medicine, Srinakharinwirot University

^{*} หน่วยโรคไต. ภาควิชาอายุรศาสตร์, คณะแพทยศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ

Introduction

Human immunodeficiency virus infection shares a variety of clinical features of many organs and systems. Rheumatic, dermatologic, gastrointestinal, neurologic, hematologic and renal disorders have been reported¹. HIV infection may also present manifestations of autoimmune diseases including systemic lupus erythrematosus. HIV infection in SLE is rare. There have been reports suggested that HIV infection might attenuate SLE activity. The imbalance of immunological states in both diseases may be a factor. Here we report a case of HIV infection in SLE with pregnancy. As far as we know this is the first reported case in Thailand.

A case report.

A 23-year-old Thai female presented in June 1992 with fever, malar rash, polyarthritis,

alopecia and oral ulcers. Initial laboratory studies revealed hematocrit of 29 %, white blood count of 5400/mm³ with 27% lymphocyte. Urinalysis showed protein free, and no urine sediment. LE test was positive, ANA positive, anti DNA positive of titer 1:2560, anti Sm positive, C₃ level of 0.16 mg/dl. She was diagnosed as having systemic lupus erythrematosus and was treated with prednisolone 45 mg/day. Her symptoms improved and prednisolone dose was gradually reduced to 20 mg/day.

In March 1993, she developed fever and generalized seizure. This was attributed to SLE. The prednisolone was increased to 60 mg/day. She responded well and no episode of seizure occurred. She was followed up with low dose prednisolne.

In November 1994 after losing to follow up for 2 months, she was admitted with high fever and generalized edema. Physical examination showed

Date	06/92	03/93	11/94	02/95	06/95	10/95	01/96	07/96
B.P.	120/80	160/110	160/110	100/80	100/60	100/60	100/60	100/60
Hct %	29	21	19	32	32	35	32	nd
Albuminuria	Neg	Neg	3+	2+	2+	2+	2+	Neg
BUN(mg/dl)	10	10	29	8	12	12	14	1 O
Cr (mg/dl)	0.8	0.9	1.4	0.5	0.4	0.6	0.4	0.5
Uric acid	6.1	6.2	9.9	9.1	5.7	4.5	4.2	5.1
Albumin	3.6	4.0	1.6	2.7	3.5	3.9	3.4	4.9
Globulin	2.9	3.3	2.4	2.4	3.3	4.2	4.5	3.7
anti ds DNA	+	nd	Neg	nd	nd	Nd	Neg	nd
ANA	+	+	nd	nd	nd	+	+	nd
C3	0.16	0.21	0.21	nd	nd	Nd	nd	nd
total T lymph	nd	nd	900	nd	2750	5130	3440	nd
CD4	nd	nd	170	nd	610	750	585	nd
CD8	nd	nd	700	nd	2230	4490	2641	nd
CD4/CD8	nd	nd	0.25	nd	0.27	0.17	0.22	nd
CD8 %	nd	nd	0.77	nd	0.81	0.87	0.76	nd

Table 1 La	boratory	manifestations	of	reported	patient
------------	----------	----------------	----	----------	---------

nd: not done

BP 180/110 mmHg, pitting edema 4+, tenderness of left cervical lymphnodes and enlargement of uterus. Hematocrit was 21%, white blood cells count 14,700/mm³, 94 % neutrophiles, 5% lymphocyte, platelet 320,000, and Coombs' test negative. The urine was positive 4+ for protein. The sediment contained 20 to 30 red cells and 8 to10 white cells. Ultrasound of uterus showed 15 weeks fetus. The test for HIV by ELISA was positive. Confirmatory test by Western blot was also positive. CD4 count was 170. CD4/CD8 ratio was 0.25. Her husband without history of intravenous drug use was also positive for HIV test. Active lupus nephritis with pregnancy was diagnosed. She was treated with prednisolone 60 mg/day. After family counseling in the presence of active lupus nephritis and HIV infection, the therapeutic abortion was performed. The prednisolone was tapered to 5 mg/day in 2 months, and discontinued. Over 5 years of follow up, she has been well and her SLE activity has been in remission (table 1). She has not had any opportunistic infections from HIV.

Discussion

Acquired immunodeficiency syndromes caused by human immunodeficiency virus (HIV) infection was originally described in 1981². It is recognized that it is an end result of an immune dysfunction characterized by a loss of CD4 T helper cells³ and high frequency of opportunistic infections. Ziegler and Stites in 1986 made a hypothesis that HIV infection is an autoimmune disease directed at the immune system⁴. HIV infection has clinical manifestations in many organs and has many clinical features that are similar to autoimmune diseases such as rheumatoid arthritis, Reiter's syndrome, vasculitis, and systemic lupus

erythrematosus⁵ HIV infection and SLE share many clinical, serologic features, and renal pathologies⁶, so they must be distinguished from one another. Both HIV infection and SLE are characterized by immune dysregulation and autoantibody production. The common immunological features of HIV infection and SLE are summarized in table 2. In HIV infection, antinuclear antibodies (ANA) may be positive in titer of 1:20 to 1:160, but anti DNA antibodies and anti Sm are not found⁷. The presence of antinuclear antibodies may contribute to polyclonal B cell activation, and diffuse hypergammaglobulinemia in HIV infection patient⁸.

Table 2 Immunological features in AIDS and SLE

Common features in AIDS and SLE

- 1. B cell activation ·
- 2. Increased immune complexes
- 3. Increased levels of β 2-microglobulin
- 4. Acid labile α interferon production
- 5. Decreased autologous MLR
- 6. Decreased lymphokine production (IL1, IL2)
- 7. Decreased NK activity
- 8. Viral etiology
- 9. Lymphopenia
- 10. Lymphocytotoxic antibodies
- 11. Decreased response to mitogens
- 12. Skin test anergy
- 13. Natural autoantibody production
- 14. Multiple organ involvement

Differences between AIDS and SLE

- 1. CD8 T lymphocyte
 - Relative increase in AIDS (decreased CD4/CD8 ratio)
 - Decreased number and function in SLE
- 2. CD4 T lymphocyte
 - Depleted in AIDS
 - Normal or depleted in SLE

Author	Numbe	r Age	Sex	First	Risk factor	Renal pathology
	of	(year)		diagnos		
	patient					
Adult cases						
Kopelman RG ⁷	1	23	f	SLE	Renal transplantation	LN type V
Furie RA ¹¹	З	37	m	SLE	IVDU	ND
		40	f	SLE	Heterosexual	ND
		30	m	SLE	IVDU	ND
Yeh CK ¹²	1	24	f	SLE	Blood transfusion	ND
Bambery P ¹³	1	23	m	SLE	Blood transfusion	ND
Molina JF ¹⁴	2	26	m	SLE	Homosexual	ND
		43	f	SLE	Heterosexual	ND
Maradona JA ¹⁵	[.] 1	28	f	ΗIV	IVDU	ND
Lu l ¹⁶	1	22	f	SLE	Heterosexual	ND
Byrd VM ¹⁷	1	23	m	SLE	Unknown	ND
Contreras G ¹⁸	2	44	f	HIV	Heterosexual	LN type IV
		37	m		Heterosexual	Collaspsing focal
						sclerosis (HIV)
Kudva YC ¹⁹	1	39	m	НIV	Homosexual	LN type V
Cimmino MA ²⁰	1	22	m	SLE	IVDU	ND
Fernandez-Miranda C ²¹	1	35	f	SLE	Heterosexual	ND
Fox RA ²²	1	30	f	SLE	Heterosexual	ND
Chang BG ²³	2	32	f	SLE	Unknown	LN type IV, HIVAN
		27	m	HIV	Homosexual	LN type IV
Reported case	1	23	f	SLE	Heterosexual	ND
Pediatric cases						
Strauss J ²⁴	2	21/2	m	HIV	Congenital HIV	?LN type IIb
		31/12	m	HIV	Congenital HIV	LN type III
D'Agati V ²⁵	1	21/2	m	ΗIV	Congenital HIV	LN type V
Chang BG ²³	2	10	m	HIV	Congenital HIV	LN type III. V
		5	f	HIV	Congenital HIV	LN type V, HIVAN

Table 3	Cases of	human	immunodeficiency	virus	infection in	sy s temic	lupus	erythrematosu	IS
---------	----------	-------	------------------	-------	--------------	-------------------	-------	---------------	----

m: male, f: female, IVDU: intravenous drug use, ND: not done, LN: lupus nephritis,

HIVAN: HIV associated nephropaty

SLE also has false positive results in HIV test by ELISA technique and indeterminate result by Western blot test⁹. They may result from cross reactivity of retroviral particle which make possibility of a retrovirus as a causative agent in pathogenesis of SLE¹⁰, by impurities in the antigenic preparation used in ELISA or Western blot test, and by production of antibodies due to polyclonal antibodies stimulation such as in HIV infection.

Concurrent HIV infection and SLE is rare only 19 cases in adults^{7,11-23} and 5 cases in children²³⁻²⁵ have been reported in the literature (table 3). The rare co-incidence of HIV infection and SLE may be epidemiologic as SLE occurs predominantly in female whereas HIV infection occurs in male. The immunologic disturbances from HIV infection that may attenuate the clinical manifestation of SLE or SLE may be protection of HIV infection²⁶ make less co-incidence of both diseases. There were 12 males and 13 females including this reported case. Ages of patients were between 2.5 to 44 years. Thirteen patients were diagnosis as having SLE before being infected with HIV. Furie¹¹ and Molina¹⁴ described the improvement of SLE when infected with HIV. The clinical and serologic features were improved when CD4 T lymphocyte decreased, and SLE was flare when CD4 increased by azathymidine treatment. They suggested that improvement of SLE might be due to CD4 depletion and supported the role of CD4 in the pathogenesis of SLE²⁷.

Our patient fulfilled the ARA criteria for diagnosis of SLE²⁸. She had periodic flare of SLE despite being treated with prednisolone before complicated by HIV infection. Her pregnancy was considered to be the cause of SLE flare. Pregnancy may increase SLE exacerbation in 20-50%²⁹ and prone to develop preeclampsia³⁰. Low C3 level and anti DNA antibody help to differentiate SLE exacerbation and preeclampsia³⁰. C3 level increases in normal pregnancy. Failure of C3 level to rise or decreased C3 level has been associated with SLE exacerbation³¹ and increases risk of abortion³². CD4 decreases during normal pregnancy³³, and turns to be normal level after delivery. Pregnancy can also accelerate HIV induced CD4 depletion, increases risk of opportunistic infection and increases mortality³⁴.

After therapeutic abortion and discontinuing all immunosuppressive drugs, her symptoms of SLE ameliorated. Her SLE and HIV infection has been quiescent for 5 years of follow up. CD4 lymphocyte was rising and higher than that when her SLE exacerbated. CD8 and CD8 percentage increased. It was different from reports from Furie and Molina. The mechanism that attenuated SLE progression may be from CD4T lymphocyte dysfunction before CD4 depletion or from increased CD8 and increased CD8 percentage caused by HIV infection which may support the role of decreased CD8 number and function in the pathogenesis of SLE³⁵.

Though T cell abnormalities are important in the pathogenesis of SLE, however the immune mechanisms that occur in SLE are multiple, complex and unclear. Other immunological mechanisms. including inappropriate induction of cytokines system³⁶, may play role. Transforming growth factor- β (TGF- β) has immunoregulatory properties to enhance monocyte function³⁷ and to suppress both T and B cell proliferation and function³⁸. Mice that lacked TGF- β produce SLE-like autoantibodies³⁹ and die of an autoimmune like illness⁴⁰. So TGF- β may play role in suppressing activity of SLE. Ohtsuka found that lymphocytes from SLE patients produced less TGF- β and interleukin 2(IL-2) than normal control and spontaneous IgG production was suppressed by adding TGF- β and IL-2^{41,42}. Monthly intramuscular injection of cDNA encoding TGF- β gene decreased IgG production and increased survival in murine SLE⁴³. Plasma TGF- β increased in HIV infection patients⁴⁴ and may suppress autoantibodies in SLE but may lead to extracellular matrix deposition and fibrosis⁴⁵. Future investigations are needed to elucidate the pathogenesis of this phenomenon and provide insight into pathogenesis and treatment of SLE.

Conclusion

We report a case of coexisting HIV infection in SLE with pregnancy. Clinical improvement of SLE was observed when complicated by HIV infection, with low CD4, high CD8, and high CD8 percentage. Immunological regulatory defects other than CD4 depletion may play role to ameliorate SLE activity.

References

- Berman A, Espinoza LR, Diaz JD, et al. Rheumatic manifestations of human immunodeficiency virus infection. Am J Med 1988;85:59-64.
- Gottlieb MS, Schroff R, Schanker HM, et al. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med 1981; 305:1425-31.
- Lane HC, Fauci AS. Immunologic abnormalities in the acquired immunodeficiency syndrome. Ann Rev Immunol 1985;3: 477-500.
- Ziegler JL, Stites DP. Hypothesis: AIDS is an autoimmune disease directed at the immune system and triggered by a lymphotropic retrovirus. Clin Immunopathol 1986;41:305-13.
- Nochy D, Glotz D, Dosquet P, et al. Renal disease associated with HIV infection, a multicentric study of 60 patients from Paris hospitals. Nephrol Dial Transplant 1993;8:11-9.
- Malatzky-Goshen E, Shoenfeld Y. AIDS and autoimmunity. Autoimmunity 1989;3:201-12.
- Kopelman RG, Zolla-Pazner S. Association of human immunodeficiency virus infection and autoimmune phenomena. Am J Med 1988;84:82-7.
- Lane HC, Masur H, Edgar MS, Whalen G, Rook AH, Fauci AS. Abnormalities of B cell activation and immunodeficiency syndrome. N Engl J Med 1983;309:453-8.
- Barthel HR, Wallace Dj. False-positive immunodeficiency virus testing in patients with systemic lupus erythrematosus. Semin Arthritis Rheum1993;23:1-7.
- Krapf FE, Hermann M, Leitmann, et al. Are retroviruses involved in the pathogenesis of SLE? Rheumatol Int 1989;9:115-21.
- Furie RA. Effects of human immunodeficiency virus infection on the expression of rheumatic illness. Rheum Dis Cli North Am 1991;17:177-88.
- 12. Yeh CK, Fox PC, Goto Y, Austin HA, Brahim JS, Fox CH. Human immunodeficiency virus (HIV) and HIV infected cells

in saliva and salivary glands of a patient with systemic lupus erythrematosus. J Rheumatol 1992;19:1810-2.

- Bambery P, Deodhar SD, Malhotra Hs, Sehgal S. Blood transfusion related HBV and HIV infection in a patient with SLE. Lupus 1993;2:203-5.
- Molina JF, Citer G, Rosler D, et al. Coexistence of human immunodeficiency virus infection and systemic lupus. J Rheumatol 1995;22:347-50.
- Maradona JA, Carton CA, Asensi V. Myasthenia gravis and systemic lupus erythematosus in association with human deficiency virus infection. Clin Infect Dis 1995;20:1577-8.
- Lu I, Cohen PR, Grossman ME. Multiple dermatofibromas in a woman with HIV infection and systemic lupus erythematosus. J Am Acad Dermatol 1995;32:901-3.
- Byrd VM, Sergent JS. Suppression of systemic lupus erythematosus by the human immunodeficiency virus. J Rheumatol 1996;23(7):1295-6.
- Contreras G, Green DF, Pardo V, Schultz DR, Bourgoigne JJ. Systemic lupus erythematosus in two adults with human immunodeficiency virus infection. Am J Kidney Dis 1996;28(2):292-5.
- Kudva YC, Peterson LS, Holly KE, Wright AJ, Hunder GG. SLE nephropathy in a patient with HIV infection: case report and review of the literature. J Rheumatol. 1996;23(10):1811-5.
- Cimmino MA, De Maria A, Moggiana G, Parisi M, Querci G. Accardo S. HIV infection in a male patient with systemic lupus erythematosus. Clin Exp. Rheumatol 1996;14(3)317-20.
- 21. Fernandez-Miranda C, Rubio R, Pulido F. Development of acquired immune deficiency syndrome in a patient with systemic lupus erythematosus. J Rheumatol 1996;23(7):1308.
- Fox RA, Isenberg DA. Human immunodeficiency virus infection in systemic lupus erythematosus. Arthritis Rheum 1997;40(6):1168-72.
- Chang BG, Markowitz GS, Seshan SV, Seigle RL, D'Agati VD. Renal manifestations of concurrent systemic lupus erythematosus and HIV infection. Am J Kidney Dis 1999;33(3):441-9.
- Strauss J, Abitbol C, Silleruelo G, et al. Renal disease in children with the acquired immunodeficiency syndrome. N Engl J Med 1989;321:625-30.
- D'Agati V, Seigel R. Coexistence of AIDS and lupus nephritis: a case report. Am J Nephrol 1990;10:243-7.
- Smilen JS, Chused TM, Leiserson WM, et al. Heterogenecity of immunoregulatory T-Cell subsets in SLE. Am J Med 1982;72:783-90.
- 27. Via CS, Handwerger BS. B-cell and T-cell function in systemic lupus erythrematosus. Curr Opin Rheumatol 1993;5:570-4.
- Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythrematosus (SLE). Arthritis Rheum 1982;25:1271-7.

- 29. Julkunen H, Kaaja R, Palosuo T, Gronhagen Riska C, Teramo
- Scand 1993;72:258-63.
 Boumpas DT, Fessler BJ, Austin III HA, Balow JE, Klippel JH, Lockshin MD. Systemic lupus erythrematosus: Emerging

K. Pregnancy in lupus nephropathy. Acta Obstet Gynecol

- concepts. Ann Intern Med 1995;123:42-53.
 31. Zurier RB, Argyros TG, Urman JD, Warren J, Rothfield NF. Systemic lupus erythrematosus. Management during pregnancy. Obstet Gynecol 1978;51:178-80.
- Devoe LD, Loy GL. Serum complement levels and perinatal outcome in pregnancies complicated by systemic lupus erythrematosus. Obstet Gynecol 1984;63:796-800.
- Sridama V, Pacini F, Yang SL, et al. Decreased levels of helper T cells: a possible cause of immunodeficiency in pregnancy. N Engl Med 1982;307(6):352-6.
- Biggar RJ, Pahava S, Minkoff HL, et al. Immuno suppression in pregnant women infected with human immunodeficiency virus. Am J Obstet Gynecol 1990;161:1239-44.
- Tsokos GC. Overview of cellular immune function in systemic lupus erythrematosus. In: Lahita RG, ed. Systemic Lupus Erythrematosus. New York Churchill Livingstone 1992; 15-20
- Steinberg AD, Gourley Mf, Klinman DM, Tsokos GC, Scott DE, Krieg AM. Systemic lupus erythrematosus. Ann Intern Med 1991;115:548-59.
- 37. Wahl SM, Hunt Da, Wakefield LM, et al. Transforming growth factor type B induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci USA 1987;84:5788.

- Roberts AB, Sporn MB. The transforming growth factor-βs.
 In: Sporn MB, Roberts AB, eds. Peptide growth factors and their receptors. New York Spinger-Verlag 1990;419-72.
- 39. Dang H, Geiser AG, Letterio JJ, Nakabayashi T, Kong L, Fermandes G, Talal N. SLE-like autoantibodies and Sjogren's syndrome-like lymphoproliferation in TGF- β knockout mice. J Immunol 1995;155(6):3205-12.
- Kulkami AB, Ward JM, Yaswen L, et al. Transforming growth factor-β null mice. An animal modal for inflammatory disorders. Am J Pathol 1995 Jan;146(1):264-75.
- Ohtsuka K, Gray JD, Stimmler MM, Toro B, Horwitz DA. Decreased production of TGF-β by lymphocytes from patients with systemic lupus erythematosus. J Immunol 1998;160(5):2539-45.
- Ohtsuka K, Gray JD, Quismorio FP Jr, Lee W, Horwitz DA. Cytokine-mediated down-regulation of B cell activity in SLE: effects of interleukin-2 and transforming growth factor-β. Lupus 1999;8(2):95-102.
- Raz E, Dudler J, Lotz M, Baird SM, Berry CC, Eisenberg RA. Carson DA. Modulation of disease activity in murine systemic lupus erythematosus by cytokine gene delivery. Lupus 1995;(4):286-92.
- 44. Kekow J, Wachsman KW, McCutchan A, Carson DA, Lotz M. Transforming growth factor- β and noncytopathic mechanism of immunodeficiency in human immunodeficiency virus infections. Proc Natl Acad Sci USA 1990;87:8321-25.
- 45. Border WA, Noble NA. Transforming growth factor β in tissue fibrosis. N Engl J Med 1994;331:1286-92.