บทความวิจัย

ปัจจัยที่สัมพันธ์กับความสำเร็จในการพัฒนาซอฟต์แวร์

สุพรชัย เพ็ญจารัส ¹ *, ณัฐี อุดดิษฐภูมิ ² และ วลีนภัสสร์ ปรัฒนปรียกร¹

บทคัดย่อ

ปัจจัยที่สัมพันธ์กับการใช้ซอฟต์แวร์มีมากขึ้น แต่ความสำเร็จของการพัฒนาซอฟต์แวร์ในแต่ละโครงการก็มีอยู่วิธีสรร เอกซ์เพรียล และระบบบริหารคุณภาพมาตรฐาน ISO 9001 เป็นอีกวิธีหนึ่งที่ได้ความนิยมนำไปในการพัฒนาซอฟต์แวร์ เพื่อให้โครงการพัฒนาซอฟต์แวร์ประสบความสำเร็จและได้รับมาตรฐาน งานวิจัยฉบับนี้เสนอปัจจัยที่สัมพันธ์กับความสำเร็จในการพัฒนาซอฟต์แวร์ ด้วยวิธีสมมุติ เอกซ์เพรียล และระบบบริหารคุณภาพมาตรฐาน ISO 9001 โดยใช้วิเคราะห์ข้อมูลเปรียบเทียบ ผลลัพธ์ของงานวิจัยพบว่า ความสำเร็จของโครงการพัฒนาซอฟต์แวร์ในประมาณ 7 ปี มีผล โครงการ องค์กร ลูกค้า ทีมงาน บุคลากร ผู้นำ และกระบวนการ นอกจากนี้พบว่า วิธีสรร และวิธีสมมุติแสบัศร์กับเอกซ์เพรียล ได้รับความนิยมมาก เพราะเหมาะสมปฏิบัติที่สอดคล้องกับทั้ง 2 วิธี สำเนาเครื่องมือที่นิยมใช้ในการบริหารจัดการโครงการคือ Microsoft Excel แนวทางในการประเมินคุณภาพของโครงการ แบ่งออกเป็น 2 แนวทาง คือ ใช้แบบจำลอง และประเมินจากความสำเร็จของโครงการ

คำสำคัญ: การพัฒนาซอฟต์แวร์ สรร เอกซ์เพรียล ระบบบริหารคุณภาพมาตรฐาน ISO 9001 การทดสอบ วรรณกรรมของอย่างเป็นระบบ

¹ ภาควิชาเทคโนโลยีสารสนเทศ คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ
² ภาควิชาการจัดการเทคโนโลยีสารสนเทศ คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

*ผู้ประสานงาน, e-mail: surapun@me.com
Factors Related to the Successfulness of Software Development

Surapun Penchamrush1*, Nattavee Utakrit2 and Nalinpat Porrawatprevakorn1

ABSTRACT

Currently, the demand for new software is increasing sharply but successful software development projects are slowly decreasing. Scrum XP and ISO 9001 Quality Management System are among popular ways to increase success in software development projects within standard levels. This research presents factors associated with success in software development when using Scrum XP and ISO 9001 Quality Management System combined with systematic analysis methods. The research findings showed that the successful software development projects consisted of 7 dimensions as follows, Project, Organization, Customer, Team, Leadership, Personnel and Process. Moreover, with the conformation of Hybrid Scrum and XP methods, a combination of XP and Scrum made this particular method a very popular one. In addition, the Popular Project Management tool was Microsoft Excel. Finally, the guideline to evaluate the quality of the project can be divided into two methods, 1) using a model to evaluate each process, 2) Investigate successful results of software project management.

Keywords: Software Development, SCRUM, XP, ISO 9001, Systematic Review

*Corresponding author, email: surapun@me.com
บทความ

ในขณะที่ความต้องการที่จะนำซอฟต์แวร์ (Software) ลักษณะต่างๆไปประยุกต์ใช้กับการปฏิบัติงานของภาคธุรกิจและออฟฟิศนั้น สำหรับอัตราความเสี่ยงและความล้มเหลวของซอฟต์แวร์เพิ่มนั้นด้วย จากการสำรวจของ Standish Group ในปี ค.ศ. 2009 พบว่ามีเพียง 32% ของโครงการพัฒนาซอฟต์แวร์ที่สามารถจัดตั้งได้ตามระยะเวลา งบประมาณ หรือความต้องการที่กำหนดไว้ [6]

จากประเด็นดังกล่าวยุ่งยากจะฝึกงานวิจัยที่มีเครื่องegieปัจจัยที่สัมพันธ์กับความสำเร็จในการพัฒนาซอฟต์แวร์ ด้วยวิธีเดิม เอ็กซ์พี และระบบบริการคุณภาพมาตรฐาน ISO 9001 เพื่อนำมาวิเคราะห์เป็นภาพความสัมพันธ์ของปัจจัยที่เกี่ยวข้องกับความสำเร็จในการพัฒนาซอฟต์แวร์ที่ผ่านมา นอกจากนี้ยังเน้นไปที่ความสัมพันธ์ของปัจจัยดังกล่าวกับความสำเร็จในการพัฒนาซอฟต์แวร์ที่ผ่านมา

วัตถุประสงค์

เพื่อวิเคราะห์ปัจจัยที่สัมพันธ์กับความสำเร็จในการพัฒนาซอฟต์แวร์ในด้านต่างๆ โดยใช้วิธีการสัมเคราะห์รวบรวมองค์ประกอบเป็นระบบ (Systematic Review) เพื่อดดอบความของงานวิจัย (Research Question: RQ) ดังนี้

ค่าถามวิจัยที่ 1 (RQ. 1) ปัจจัยใดที่มีความสัมพันธ์กับความสำเร็จในการพัฒนาซอฟต์แวร์ ด้วยวิธีเดิม เอ็กซ์พี และระบบบริการคุณภาพมาตรฐาน ISO 9001

ค่าถามวิจัยที่ 2 (RQ. 2) วิธีใหม่ แล้วเครื่องมือใดที่นิยมใช้การพัฒนาซอฟต์แวร์ ด้วยวิธีเดิม เอ็กซ์พี และระบบบริการคุณภาพมาตรฐาน ISO 9001
ค่าตามวิจัยที่ 3 (RQ. 3) หลักเกณฑ์โดยทั่วไปในการประเมินคุณภาพของโครงการพัฒนาซอฟต์แวร์ ด้วยวิธีสิ่งทอ เอกซ์ที และระบบบริหารคุณภาพมาตรฐาน ISO 9001

ขอบเขตของงานวิจัย

งานวิจัยครั้งนี้เป็นการรวบรวม และวิเคราะห์หลักฐานเชิงประจักษ์อย่างเป็นระบบ (Documentary Systematic Review) [7] ที่มีเป้าหมายที่สิ่งทอข้อมูลความสำเร็จในการพัฒนารายการซอฟต์แวร์ ด้วยวิธีสิ่งทอ เอกซ์ที และระบบบริหารคุณภาพมาตรฐาน ISO 9001

วิธีการดำเนินการวิจัย

กระบวนการค้นหาข้อมูล

งานวิจัยเริ่มต้นจากการตัดคำที่และกำหนดขอบเขตของงานวิจัย ซึ่งคำที่และขอบเขตของงานวิจัยจะนำไปสู่การตัดคำสำคัญที่ใช้ในการค้นหาเอกสารที่เกี่ยวข้อง โดยผู้วิจัยเลือกใช้ฐานข้อมูลที่ได้รับการยอมรับทั่วไปในประเทศ และต่างประเทศ เช่น IEEE Xplore, ACM Portal และ Thai LIS เป็นต้น ผลลัพธ์จากภาษาอังกฤษที่ค้นพบจากคำสำคัญของงานวิจัย จะถูกกลั่นกรองลง 4 ครั้ง คือ กลั่นกรองด้วยคำสำคัญข้อเรื่อง บทคัดย่อ และเนื้อหา เพื่อให้เกิดความเที่ยงถี่ และแม่นยำได้ว่างานวิจัยที่ค้นพบมีความเกี่ยวข้องกับคำค้นหาของงานวิจัยที่กำหนดไว้ได้ให้ได้มาที่สุด จากนั้นงานวิจัยที่ได้ผ่านการประเมินตามเงื่อนไขที่กำหนดไว้มากำลังการวิเคราะห์ เปรียบเทียบ เพื่อหาทฤษฎีออกไป กระบวนการค้นหาข้อมูลสามารถสรุปเป็นแผนภาพดังแสดงไว้ในรูปที่ 1

<table>
<thead>
<tr>
<th>กำหนดขอบเขต</th>
<th>ค้นหาเอกสารวิจัย</th>
<th>คำสำคัญ</th>
<th>ฐานข้อมูลตั้งค่า</th>
<th>คำค้นหา</th>
<th>ค้นหาเอกสาร</th>
<th>วิเคราะห์ข้อมูล</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM</td>
<td>IEEE</td>
<td>Science Direct</td>
<td>Scopus</td>
<td>Cite Seer</td>
<td>Google Scholar</td>
<td>Thai LIS</td>
</tr>
</tbody>
</table>

รูปที่ 1 แสดงกระบวนการค้นหาข้อมูล
แหล่งข้อมูล

ผู้วิจัยได้เลือกแหล่งข้อมูลที่เชื่อถือ และจัดเก็บงานวิจัยที่เกี่ยวข้องกับเทคโนโลยีสารสนเทศและการพัฒนาซอฟต์แวร์ทั้งในประเทศ และต่างประเทศ ดังนี้

1. ACM Portal (http://dl.acm.org) เป็นแหล่งข้อมูลที่มีจ้างวารสาร บทความวิชาการ ขาวสาร และผลการประชุมวิชาการที่รวบรวม糊涂แห่งหลายฉบับ และการเขียนโปรแกรมที่ได้รับความนิยมสูง

2. IEEE Xplore (http://ieeexplore.ieee.org) เป็นแหล่งข้อมูลที่เน้นหนักไปที่เดียวกับ

เกี่ยวกับวิทยาการคอมพิวเตอร์ ที่มีเอกสารฉบับเต็ม วารสาร นิตยสารและการประชุมวิชาการที่ตีพิมพ์ตั้งแต่ปี

3. Science Direct (http://www.sciencedirect.com) เป็นฐานข้อมูลวิชาการ และผลการ

ประชุมวิชาการที่เกี่ยวข้องกับวิทยาศาสตร์และเทคโนโลยีโดยตรง และมีบทความในฐานข้อมูลมากกว่า 10

ลานวาริจย

4. Scopus (www.scopus.com) เพราะเป็นแหล่งข้อมูลขนาดใหญ่ ที่มีข้อมูลวิชาการ บทความ

และวารสาร ที่มีความหลากหลายสาขาวิชา รวมถึงสาขาวิชาที่เกี่ยวข้องกับเทคโนโลยีสารสนเทศด้วย

5. Cite SeerX (http://citeseerx.ist.psu.edu) เป็นแหล่งข้อมูลที่เกี่ยวข้องรวมรวมการใน

สาขาวิทยาการคอมพิวเตอร์

6. Google Scholar (http://scholar.google.com) เป็นแหล่งข้อมูลวิชาการ บทความ

วิทยานิพนธ์ หนังสือ บทความ และบทความจากสาขาวิชาหลัก รวมถึงบทความทางวิทยาศาสตร์ และองค์การ

ด้านการศึกษาที่มีความหลากหลาย

7. Thai LIS (http://tdc.thailis.or.th) เป็นแหล่งข้อมูลวิชาการที่รวบรวมวารสาร วิทยา-

นิพนธ์ บทความวิชาการ และผลการประชุมวิชาการที่ได้รับความนิยมในประเทศไทย และมีบทความวิชาการ

ที่เกี่ยวข้องกับเทคโนโลยีสารสนเทศด้วย

การคัดกรองข้อมูล

หลังเกณฑ์และคำลัพธ์ที่ใช้ในการคัดกรองวาริจย และรวบรวมที่เกี่ยวข้อง คือ การคัดกรอง

คำลัพธ์จำกัดด้านความของงานวิจัย โดยใช้หลักการกำหนดประโยคสำหรับการค้นหา คือ (X1 OR X2 ...

OR Xn) AND (Y1 OR Y2 ... OR Yn) โดยที่ X หมายถึง คำพื้นฐานที่สำคัญ และ Y หมายถึง กลุ่ม

ของวิธีที่ใช้ในการบริหารจัดการโครงการพัฒนาซอฟต์แวร์ จากตัวอย่างงานวิจัยสามารถนามแยกเป็น

ประโยคสำหรับคำค้นหาดังนี้

X: {Improvement, Evaluation, Measurement, Survey, Tool, Success, Factor, Practice}

Y: {Agile, Scrum, XP, ISO 9001}

วิธีพัฒนาซอฟต์แวร์แบบบสครัม และแบบเอ็กซ์ปีชี แบบวิธีการหนึ่งของการพัฒนาซอฟต์แวร์แบบ

อาโกวิซจ์ได้เริ่มความนิยมสูง การค้นคว้า อาโกวิซ (Agile) มาใช้รวมในการค้นหา วิธีการสำรวจเพื่อที่จะให้

ผลการค้นหารวดเร็วในการพัฒนาซอฟต์แวร์ เครื่องมือ และวิธีใดก็ตามแบบอื่น ๆ ที่เกี่ยวข้องเนื่องจากมี

ผู้ใช้มีคดีพื้นฐานกับการค้นหา เช่น ปีที่พิสูจน์ขอเริ่มต้นในปี 2003 จนถึงปีที่สุด รวมระยะเวลา

เวลา 10 ปี ซึ่งเหมาะสมที่จะใช้ในการอ้างอิง รวมถึงช่วยให้ทราบถึงความคาวาณทางวิชาการ [9] ภาษาเช่น
ถูกกำหนดไว้เป็นภาษาอังกฤษ หรือภาษาไทย และเลือกเฉพาะงานวิจัยที่มีลิมิตเติม รวมถึงงานวิจัยที่เกี่ยวกับการพัฒนาระบบงาน (Review) งานวิจัยเกี่ยวกับการสำรวจ (Survey) ส่วนบทความ และการแสดงความคิดเห็นไม่ได้รับการตีพิมพ์จะไม่ถูกนำมาพิจารณา

กระบวนการตัดเลือก และสังเกตข้อมูล

จากการค้นหาข้อมูลจากแหล่งข้อมูล ตามเงื่อนไขที่กำหนดไว้ดังกล่าวข้างต้น ผู้วิจัยได้ใช้หลักในการแยก และสังกัดงานวิจัยที่ไม่ดีของการออก ดังแสดงในตารางที่ 1 และรูปที่ 2 โดยมีขั้นตอนดังนี้การ แบ่งแยก และสังเกตข้อมูลดังนี้

1. นำงานวิจัยเรียงเดียวกันออกไปก่อน หลังจากนั้นผู้วิจัยจะเลือกเฉพาะงานวิจัยที่เป็นภาษาอังกฤษ หรือภาษาไทย เลือกเฉพาะงานวิจัยที่นำเสนอตั้งแต่ปี ค.ศ. 2003 จนถึง ค.ศ. 2013 ได้งานวิจัยทั้งสิ้น 958 งานวิจัย

2. ตัดเลือกเฉพาะงานวิจัยที่มีชื่อเริ่ม (Title) หรือหัวหัวข้อและไม่ตรงกับวัตถุประสงค์ และขอบเขตของ (Keyword) ที่ระบุไว้อย่างชัดเจนตรงกับวัตถุประสงค์ของงานวิจัย และตรงกับประโยคที่ใช้ในการค้นหา เช่น Improvement, Evaluation, Survey, Scrum, XP หรือ ISO 9001 เป็นต้น ได้ขั้นตอนนี้เหลืองานวิจัยสิ้นทั้งสิ้น 145 งานวิจัย

3. อ่านบทคัดย่อ โดยจะตัดเลือกเฉพาะงานวิจัยที่พบหลักอยู่ในแปลงข้อเสนอคลังบนวัตถุประสงค์งานวิจัย และมีเอกสารฉบับเต็ม เหลืองานวิจัยพังสิ้น 94 งานวิจัย

4. อ่านเนื้อหาของงานวิจัยโดยละเอียด เพื่อให้แน่ใจว่าเนื้อหาต่างๆ สามารถตอบคำถามของงานวิจัย นำมาควรระดับและสรุปผลได้ ได้งานวิจัยมาวิเคราะห์พังสิ้น 66 งานวิจัย

ตารางที่ 1 แสดงผลการคัดเลือกงานวิจัยที่เกี่ยวข้อง (ค้นหาระหว่างวันที่ 1-7/5/2556)

<table>
<thead>
<tr>
<th>การค้นหา</th>
<th>จำนวนงานวิจัย</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACM</td>
</tr>
<tr>
<td>ผลการค้นหาจาก คำสำคัญ</td>
<td>70</td>
</tr>
<tr>
<td>ตรวจสอบจากการอ่าน ชื่อหน้าชื่อ</td>
<td>18</td>
</tr>
<tr>
<td>ตรวจสอบจากการอ่าน บทคัดย่อ</td>
<td>10</td>
</tr>
<tr>
<td>ตรวจสอบจากการอ่าน เนื้อหา</td>
<td>6</td>
</tr>
</tbody>
</table>
กระบวนการวิเคราะห์ข้อมูล

รูปที่ 2 แสดงกระบวนการวิเคราะห์ข้อมูล และการเก็บข้อมูลลงใน Microsoft Excel

ผลการวิจัย

ผลจากการวิเคราะห์งานวิจัย และคำตอบคำถามของงานวิจัย

คำถามวิจัยที่ 1 (RQ1) ปัจจัยใดที่มีความสัมพันธ์กับความสำเร็จในการพัฒนาซอฟต์แวร์ด้วยวิธีคิดโดย เอื้อที่ และระบบบริหารจัดการทรัพยากร ISO 9001 จากผลการวิเคราะห์ขั้นตอน สามารถแบ่งได้ออกเป็น 7 มิติ คือ โครงการ องค์กร ดูแลการ ที่มีงาน บุคลากร ผู้นำ และกระบวนการ ในแต่ละมิติที่จะแบ่งเป็นปัจจัยด้านต่างๆ ที่เกี่ยวข้อง ตัวอย่างเช่น ความจริงของแหล่งข้อมูล และปัจจัยของสัมพันธ์

1. องค์กร (Organization)

1.1 การสื่อสาร (Communication) ควรสนับสนุนให้มีการสื่อสารระหว่างฝ่ายต่างๆ ให้เกิดการติดต่อกันที่มีความสัมพันธ์ที่ดี

กระบวนการวิเคราะห์ข้อมูล

รูปที่ 2 แสดงกระบวนการวิเคราะห์ข้อมูล และการเก็บข้อมูลลงใน Microsoft Excel

ผลการวิจัย

ผลจากการวิเคราะห์งานวิจัย และคำตอบคำถามของงานวิจัย

คำถามวิจัยที่ 1 (RQ1) ปัจจัยใดที่มีความสัมพันธ์กับความสำเร็จในการพัฒนาซอฟต์แวร์ด้วยวิธีคิดโดย เอื้อที่ และระบบบริหารจัดการทรัพยากร ISO 9001 จากผลการวิเคราะห์ขั้นตอน สามารถแบ่งได้ออกเป็น 7 มิติ คือ โครงการ องค์กร ดูแลการ ที่มีงาน บุคลากร ผู้นำ และกระบวนการ ในแต่ละมิติที่จะแบ่งเป็นปัจจัยด้านต่างๆ ที่เกี่ยวข้อง ตัวอย่างเช่น ความจริงของแหล่งข้อมูล และปัจจัยของสัมพันธ์

1. องค์กร (Organization)

1.1 การสื่อสาร (Communication) ควรสนับสนุนให้มีการสื่อสารระหว่างฝ่ายต่างๆ ให้เกิดการติดต่อกันที่มีความสัมพันธ์ที่ดี
1.2 วัฒนธรรมองค์กร (Corporate Culture) ควรสร้างวัฒนธรรมองค์กรให้ทุกฝ่ายมีความสอดคล้องกับการทำงานของทีมพัฒนาซอฟต์แวร์

1.3 การเปลี่ยนแปลงวิธีบริหารจัดการ (Chang Going the Way of Management) ควรมีความแนบแน่น กระชับ ชัดเจน และสอดคล้องกับที่ต้องการ

1.4 การวางแผน (Planning) รวมถึงการควบคุม (Control) ให้เป็นไปตามแผนงานที่วางไว้ โดยกำหนดให้ทุกฝ่ายมีกระบวนการทำงานที่ชัดเจนและตรวจสอบย้อนหลังได้ทุกขั้นตอน

1.5 สภาพแวดล้อมองค์กร (Organizational Environment) รวมถึงวัสดุ vocab แล้วสอดคล้องกับการทำงานที่สอดคล้องกับวัฒนธรรมองค์กร

1.6 วิธีการพัฒนาที่ชัดเจน (Creating Clear Vision) การประกาศวัตถุประสงค์ วัตถุประสงค์ขององค์กร และวัตถุประสงค์ของแต่ละฝ่ายให้ชัดเจน เพื่อใช้เป็นแนวทางในการทำงาน การสื่อสาร และปรับปรุงกระบวนการทำงาน

2. ผู้นำ (Leader) หมายถึง ผู้บริหารระดับสูงขององค์กร ผู้ที่มีส่วนในการตัดสินใจ วางแผน และกำหนดนโยบายต่างๆ ในมิติของผู้นำมีปัจจัยอยู่ 2 ปัจจัย ดังนี้

2.1 การสนับสนุนจากผู้นำ (Support of Top Leader) ผู้นำระดับสูงควรมีความเข้าใจกระบวนการในการพัฒนาซอฟต์แวร์ กระตุ้น และให้การสนับสนุนเพื่อพัฒนาซอฟต์แวร์อย่างต่อเนื่อง

2.2 ความมุ่งมั่นในการจัดการ (Management Commitment) ผู้นำควรระบุเป้าหมายในการทำงานที่ชัดเจน มีการปรับปรุงกระบวนการ การจัดตั้ง ตรวจสอบการทำงานอย่างต่อเนื่อง

3. กระบวนการ (Process) หมายถึง วิธีการ ขั้นตอน และเครื่องมือ เป็นแนวทางปฏิบัติในการพัฒนาซอฟต์แวร์ ตั้งแต่เริ่มต้นจนสิ้นสุดกระบวนการให้กับสุภัค มีปัจจัยอยู่ 4 ปัจจัย ดังนี้

3.1 การจัดการการเปลี่ยนแปลง (Requirement Management) ควรมีกระบวนการบริหารจัดการความเปลี่ยนแปลงที่ชัดเจน เป็น

3.2 การตรวจสอบคุณภาพ (Quality Control) ตรวจสอบและประเมินจากสูงสุดถึงการพัฒนาซอฟต์แวร์ เพื่อมั่นใจว่าซอฟต์แวร์ที่ส่งมอบให้ลูกค้าแล้วได้คุณภาพตามที่สูงสุดต้องการ

3.3 กระบวนการพัฒนา (Development Process) หรือวิธีการเลือกใช้ (Selected Method) ควรเป็นรูปแบบมาตรฐานและชัดเจน ตรวจสอบได้ และสอดคล้องกับวัฒนธรรมองค์กร

3.4 เทคนิควิธีที่ใช้ (Technical) รวมถึง แนวทางปฏิบัติ (Practices) และเครื่องมือต่างๆ (Tools) ที่เลือกใช้ ตรวจสอบถึงกระบวนการพัฒนา และส่งเสริมให้มีการสื่อสารอย่างต่อเนื่อง

4. ทีมงาน (Team) หมายถึง ทีมงานที่พัฒนาซอฟต์แวร์ มีติดต่อทีมงานมีอยู่ 4 ปัจจัย ดังนี้

4.1 ขนาดของทีม (Team Size) ทีมขนาดใหญ่จะมีแนวโน้มทำให้เกิดความตื่นตระหนกในการตัดสินใจ 12 ทีมพัฒนาซอฟต์แวร์ด้วยกลไก ควรมีสมาชิกในทีมสมาชิกต่ำกว่า 5 และไม่เกิน 7 คน

4.2 การกระจายของทีม (Team Distribution) ควรให้กับทีมที่มีอัตราในการตัดสินใจ และมีโอกาสได้ใกล้ชิดกับลูกค้า

4.3 ความสามารถของทีม (Team Capability) ควรประกอบด้วยสมาชิกที่มีความสามารถ มีการอบรมเพื่อเพิ่มทักษะ และมีการแบ่งปันความรู้ในโครงการให้กับสมาชิกทุกคนในทีมอยู่ตลอดเวลา
4.4 สภาพแวดล้อมของทีม (Team Environment) ความปรับปรุงสภาพแวดล้อม เครื่องมือในการทำงานให้สนับสนุนอย่างเต็มที่ และควำมมิตรดุริรกรรมในการทำงาน เช่น การแข่งขันระหว่างทีมอย่างต่อเนื่อง

5. บุคคล (Personal) หมายถึง พนักงานแต่ละตำแหน่งในพื้นที่งานพัฒนาซอฟต์แวร์ ได้แก่ นักพัฒนา นักทดสอบ และนักออกแบบระบบ เป็นต้น ในมิติของบุคคลมีอยู่ 3 ปัจจัย ดังนี้

5.1 การเรียนรู้ (Learning) พนักงานควรมีความกระตือรือร้นในการแบ่งปันความรู้ และการเรียนรู้อยู่ตลอดเวลา

5.2 สมรรถนะเฉพาะบุคคล (Competency) พนักงานทุกคนในพื้นที่ควรมีความสามารถเฉพาะ ด้านที่ชัดเจน และประกอบด้วยขั้นตอนหลายด้าน

5.3 ลักษณะเฉพาะบุคคล (Personal Characteristics) สมาชิกในพื้นที่ควรมีความซื่อสัตย์ มีทัศนคติที่ดีในการทำงาน และมีความรับผิดชอบ

6. โครงการ (Project) หมายถึง โครงการพัฒนาซอฟต์แวร์ที่องค์กร หรือหน่วยงานได้รับมอบหมายให้พัฒนา หรือบริโภค มีปัจจัยที่เกี่ยวข้องอยู่ 3 ปัจจัย ดังนี้

6.1 ความต้องการที่ชัดเจน (Requirements Stability) ควรมีแนวทางการตรวจสอบความถูกต้องของข้อเสนอ และความต้องการอยู่เสมอ ตลอดระยะเวลาในการพัฒนาซอฟต์แวร์

6.2 กำหนดการของโครงการ (Schedule) ควรเป็นระยะเวลา และกำหนดการต่างๆ ของโครงการ และระบุข้อกำหนดเวลาที่ควบคุมการทำงานที่ไม่ชัดเจน หรือมีการเปลี่ยนแปลง

6.3 งบประมาณ (Budget) ปัจจัยที่ซับซ้อนกับการพัฒนาซอฟต์แวร์ โครงการ หากประมาณงบประมาณมากเกิน ถ้าทำให้เสียโอกาสในการแข่งขัน แต่หากประมาณงบประมาณ พอต้องการน้อยเกินไป ถ้าจะทำให้ส่งผลต่อความสำเร็จในการพัฒนาซอฟต์แวร์

7. ลูกค้า (Customer) ถือเป็นปัจจัยภายนอกที่สำคัญ ลูกค้าในที่นี้รวมถึงหน่วยงานอื่นๆ ที่เป็นผู้รับของใหม่การพัฒนาซอฟต์แวร์แม้จะยังไม่พัฒนาซอฟต์แวร์ ในมิติของลูกค้ามีปัจจัยที่เกี่ยวข้องอยู่ 3 ปัจจัย ดังนี้

7.1 การมีส่วนร่วมของลูกค้า (Customer Involvement) ควรให้ลูกค้ามีส่วนร่วมในการวางแผน จัดลำดับความสำคัญ ตรวจสอบซอฟต์แวร์อย่างต่อเนื่อง

7.2 การทำงานร่วมกันกับลูกค้า (Customer Collaboration) ควรมีลูกค้าที่มีเจตนารมณ์ในการเป็นสมาชิกที่เป็นที่พึ่ง

7.3 ความมุ่งมั่นของลูกค้า (Customer Commitment) ลูกค้าควรมีความมุ่งมั่นที่จะให้ความร่วมมือ ติดตามการทำงาน และร่วมกันทำงานทั้งในพื้นที่พัฒนาอย่างต่อเนื่อง

สูตรที่ 3 แสดงถึงสิ่งที่มีปัจจัยต่างๆ รวมถึงงานวิจัยเกี่ยวกับปัจจัยต่างๆ ที่สำคัญเพื่อความสำเร็จในการพัฒนาซอฟต์แวร์ โดยสูตรที่ 3 ได้จัดเรียงตามความถี่ของงานวิจัยที่กล่าวถึงมากที่สุด
รูปที่ 3 แสดงผลและปัจจัยที่มีความสัมพันธ์กับความสำเร็จในการพัฒนาซอฟต์แวร์

คำถามวิจัยที่ 2 (RQ2) รีวิววิธีและเครื่องมือที่ยิ่งใหญ่ในการพัฒนาซอฟต์แวร์ ด้วยวิธี Scrum เอ็กซ์พีและระบบบริหารคุณภาพมาตรฐาน ISO 9001 จากผลการวิเคราะห์งานวิจัยที่ได้คัดเลือกมาพบว่า รีวิววิธีที่ได้วิวัฒนา ความมั่นใจได้รับความมั่นใจ 5 อันดับแรก ประกอบด้วย Scrum, Hybrid Scrum/XP, Kanban, FDD และ XP ตามลำดับ ส่วนแนวทางปฏิบัติที่ยิ่งใหญ่ใช้ส่วนมากจากวิธี Scrum และอีกขั้นหนึ่ง เช่น Collective Code Ownership, Planning Game, Unit Test, Backlog, Startup Meeting, Sprint Review, Burn-down Chart และ Retrospective เป็นต้น ซึ่งการวิเคราะห์ใกล้เคียงกับผลการสำรวจของ VersionOne [2] ด้วยแบบสอบถามที่ได้รับการตอบกลับถึง 6,042 ฉบับ VersionOne ยังสรุปได้ว่า
ควรเน้นที่ข้อมูลมาใช้ช่วยในการบริหารจัดการ และพัฒนาซอฟต์แวร์ด้วยวิธีใด 10 อันดับแรก ได้แก่ Microsoft Excel, Version One, Microsoft Project, JIRA, In-House (การพัฒนาซอฟต์แวร์ใช้งานภายในองค์กร), Google Docs, Microsoft TFS, HP Quality Center, Vendor Y และ Bugzilla

<table>
<thead>
<tr>
<th>แนวทำกิจวัตร</th>
<th>งานบริการที่เกี่ยวข้อง</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrum</td>
<td>[516], [517], [543], [551], [557], [559]</td>
</tr>
<tr>
<td>FDD</td>
<td>[516], [543], [551], [557]</td>
</tr>
<tr>
<td>XP (Extreme Programming)</td>
<td>[516], [543], [551], [557]</td>
</tr>
<tr>
<td>DSDM</td>
<td>[543], [551], [557]</td>
</tr>
<tr>
<td>Kanban</td>
<td>[543], [557]</td>
</tr>
<tr>
<td>Agile</td>
<td>[531], [543]</td>
</tr>
<tr>
<td>Crystal</td>
<td>[543], [551]</td>
</tr>
<tr>
<td>Hybrid Scrum/XP</td>
<td>[557]</td>
</tr>
</tbody>
</table>

รูปที่ 4 แสดงวิธีใด และแนวทำกิจวัตรที่ข้อมูลใช้

คำานวณวิจัยที่ 3 (RQ3) หลักเกณฑ์โดยที่ใช้ในการประเมินคุณภาพของโครงการพัฒนาซอฟต์แวร์ ด้วยวิธีส่วน เทียบกับ และระบบบริหารคุณภาพมาตรฐาน ISO 9001 จากผลการวิเคราะห์พบว่าสามารถแยกได้ 2 แนวทาง แนวทางแรกคือการใช้แบบเจาะลึก ได้แก่ แบบเจาะลึก PDCA แบบเจาะลึก PRISMS และแบบเจาะลึก Post-Mortem จากการออกแบบพบว่า แบบเจาะลึก PDCA มีการกล่าวถึงมากกว่าแบบอื่น เมื่อมามาแบบเจาะลึก PDCA นั้นมีมูลค่าที่สามารถประยุกต์ใช้ได้กับหน่วยงานที่พัฒนาซอฟต์แวร์ และหน่วยงานอื่นๆ ที่ไม่เกี่ยวกับการพัฒนาซอฟต์แวร์ แนวทางที่สองคือการประเมินจากความสัมพันธ์ของการพัฒนาซอฟต์แวร์ ได้แก่ วัตถุประสงค์หลักพื้นฐานของทีมงาน วัตถุประสงค์สามารถพยานถึงกระบวนการ วัตถุประสงค์สำนักซอฟต์แวร์ตามระยะเวลาที่กำหนด วัตถุประสงค์หลักพื้นฐานของทีมงาน ของทีมงาน วัตถุประสงค์สำนักซอฟต์แวร์และกระบวนการ วัตถุประสงค์ความพึงพอใจของทีมงาน วัตถุประสงค์สำนักซอฟต์แวร์ตามระยะเวลาที่ความพึงพอใจของผู้ใช้ วัตถุประสงค์ทศุ่นของซอฟต์แวร์ วัตถุประสงค์ตามคุณค่าของซอฟต์แวร์ และวัตถุประสงค์แผนที่นั้นๆ
รูปที่ 5 แสดงวิธีการ และรายละเอียดของการประเมินคุณภาพของโครงการพัฒนาซอฟต์แวร์

ข้อจำกัดของงานวิจัย

ผู้วิจัยสิ่งเอกสารฐานข้อมูลที่ต้องทำให้ชัดเจนและเด่นชัดความมั่นใจในการค้นหาข้อมูลที่แหล่งประเทศ และในประเทศ เช่น ACM, IEEE, Science Direct และ Thai LIS เป็นต้น ในขณะเดียวกันต้องเลือกใช้ฐานข้อมูลของ Google Scholar เพื่อลดข้อต่ำในเรื่องของการวิจัยที่อยู่ในรูปแบบที่ทันสมัยตามมาตรฐานเท่านั้น ผู้วิจัยพยายามเลือกใช้ภาพที่กว้างที่สุดในการค้นหา เพื่อให้ได้ผลการค้นหาข้อมูลที่มากที่สุดเป็นไปได้ โดยเลือกปีที่ทันสมัยหรือเหมือนกันระหว่างปี 2003 ถึง 2013 ซึ่งถือว่าพอดีที่จะรับแนวนโยบายการปฏิบัติเป็นไปตามของงานวิจัยในช่วงระยะยาว และข้อมูลที่ได้ก็ไม่ล่าสมัยจนเกินไป

ผู้วิจัยไม่ได้มีการเตรียมงานวิจัยเริ่ม (Co Researcher) ในการติดต่อกับงานวิจัย ดังนั้น ผลการค้นหา และผลการค้นหาข้อมูลจึงได้ผลลัพธ์ที่ไม่ครอบคลุมทั้งหมด แต่ผู้วิจัยเชื่อว่าผลการวิจัยนี้มีผลลัพธ์ที่ไม่แตกต่างจากงานวิจัยอื่นๆ และมีรูปแบบความสัมพันธ์ที่สอดคล้องกับทฤษฎีกำกับต่อไป

สรุปและอภิปรายผลการวิจัย

สรุปผลการวิจัย

งานวิจัยฉบับนี้ใช้วิธีการวิเคราะห์วรรณกรรมอย่างเป็นระบบ ผลการวิจัยทำให้ทราบว่า ปัจจัยที่เกี่ยวข้องความสำเร็จในการพัฒนาซอฟต์แวร์ไม่ได้ขึ้นอยู่กับกระบวนการ หรือความรู้ ความสามารถของทีมพัฒนาซอฟต์แวร์เพียงอย่างเดียว แต่ปัจจัยที่เกี่ยวข้องกับความสำเร็จของโครงการพัฒนาซอฟต์แวร์มี แบ่งออกเป็น 7 มิติ จดเส้นความเสี่ยงที่พบจากการวิเคราะห์ ประกอบด้วย องค์กร ดูแล, บุคลากร, กระบวนการ, ทีมงาน, โครงการ และผู้นำ, ตามลำดับ ใน 7 มิติ มีปัจจัยภายนอกเพียงปัจจัยเดียวที่เกี่ยวข้องกับความสำเร็จของโครงการพัฒนาซอฟต์แวร์คือ, ดูแล

ในเรื่องของการเตรียมงานวิจัยเริ่มขึ้นที่มีทฤษฎีประยุกต์ใช้ในการพัฒนาซอฟต์แวร์ เช่น Scrum, Hybrid Scrum/XP และ Kanban แต่จากการวิเคราะห์ พบว่า, งานวิจัยที่เกี่ยวข้องกับ Hybrid Scrum/XP กลับมี
ผลการวิจัย ผลการวิจัยแสดงให้เห็นว่ามีมิติที่สำคัญอยู่กับความสำเร็จในการพัฒนาซอฟต์แวร์ 7 มิติ คือ มิติที่สื่อถึงขอบเขตของแผนก มาตรฐาน การทำงาน และเทคนิคต่างๆ ดังนั้น การพัฒนาซอฟต์แวร์ไม่สามารถสำเร็จได้แม้เน้นเพียงด้านเดียว การออกแบบ หรือการเลือกใช้แนวทางปฏิบัติอย่างเช่นอย่างหนึ่งอย่างใด แต่ควรได้รับการสนับสนุนจากองค์กร เช่น ส่งเสริมให้มีการสื่อสารระหว่างฝ่ายต่างๆ สร้างแผนการพัฒนาองค์กรให้ผลลัพธ์ที่เป็นไปในทางการพัฒนาซอฟต์แวร์ และการสนับสนุนจากผู้บริหาร ซึ่งเป็นปัจจัยประกอบการพัฒนาไปรษณีย์ ควรให้สอดคล้องกับการพัฒนาซอฟต์แวร์ และแผนปฏิบัติการเพื่อที่จะพัฒนาซอฟต์แวร์ สอดคล้องกับแนวทางปฏิบัติของวิถีศรัทธา และมีศักยภาพสำหรับการสื่อสารแบบทุกฝ่ายทั้งหมดในการพัฒนาซอฟต์แวร์ ส่วนระบบบริการคุณภาพมาตรฐาน ISO 9001 ที่มีการตรวจสอบคุณภาพด้วยวิธี PDCA ที่มีความสำคัญกับความสำเร็จในการพัฒนาซอฟต์แวร์ ซึ่งสามารถทำได้กับกระบวนการพัฒนาซอฟต์แวร์ได้ ซึ่งรวมถึงการพัฒนาซอฟต์แวร์โดยวิถีศรัทธารับรองการพัฒนาซอฟต์แวร์ได้ตามมาตรฐาน ISO 9001 ของซอฟต์แวร์ในประเทศไทย

ข้อเสนอแนะทางวิจัย งานวิจัยที่ได้ศึกษามาส่งให้เห็นว่าเป็นงานวิจัยจากต่างประเทศ ซึ่งมีวัฒนธรรมองค์กร และวัฒนธรรมในการทำงานที่แตกต่างจากวัฒนธรรมการทำงานของซอฟต์แวร์ในประเทศไทย ในขณะที่ประเทศมีการพัฒนาซอฟต์แวร์ที่เหมาะสมกับตลาด รวมถึงมีการพัฒนาซอฟต์แวร์ที่มีคุณภาพ มาตรฐาน ISO 9001 มาใช้ในกระบวนการพัฒนาซอฟต์แวร์ ทำให้สามารถนำไปใช้ในงานวิจัยของประเทศไทยได้ ซึ่งสามารถทำได้กับแผนการพัฒนาซอฟต์แวร์ ซึ่งมีคุณภาพการพัฒนาซอฟต์แวร์ ที่น่าสนใจที่จะส่งผลต่อไปยังประเทศไทยได้ มีความสำคัญกับความสำเร็จในการพัฒนาซอฟต์แวร์ได้แก่ วิถีศรัทธา หรือวิธีการพัฒนาซอฟต์แวร์ในประเทศไทย นั้นได้รับการพัฒนาซอฟต์แวร์ ซึ่งมีคุณภาพการพัฒนาซอฟต์แวร์จากแบบเดิมเป็นแบบใหม่ ซึ่งเป็นแนวทางการพัฒนาซอฟต์แวร์ ที่มีคุณภาพการพัฒนาซอฟต์แวร์ จากแบบเดิมเป็นแบบใหม่ ซึ่งมีคุณภาพการพัฒนาซอฟต์แวร์จากแบบเดิมเป็นแบบใหม่ แต่ต้องมีการพัฒนาซอฟต์แวร์ที่มีคุณภาพการพัฒนาซอฟต์แวร์จากแบบเดิมเป็นแบบใหม่ ด้วยการพัฒนาซอฟต์แวร์ไม่ประสบความสำเร็จ
เอกสารอ้างอิง

1. ฟิลิปพรอม ทิพแสง. 2552. การเปรียบเทียบประสิทธิภาพเทคนิคการพัฒนาระบบโดยใช้ Agile และ Non-Agile เทคโนโลยีสารสนเทศ. ฟิชูโก้กิ. มหาวิทยาลัยบัณฑิต.

3. ชรินทร์ธุกร กล้ำเชิง. 2552. การวิเคราะห์เปรียบเทียบความสามารถในการพัฒนาและมั่นคงรักษายาหุติฟื้น ระหว่างกระบวนการพัฒนาระบบ Agile (Extreme Programming) และ Non-Agile (Waterfall-Based). วิทยาการคอมพิวเตอร์. กรุงเทพฯ. มหาวิทยาลัยธรรมศาสตร์.

8. บุญธรรม กิจประดิ์สุทธิ์. 2551. ศูนย์การวิจัย การเขียนรายงาน การวิจัยวิทยานิพนธ์ (พิมพ์ครั้งที่ 2). กรุงเทพฯ. สำนักพิมพ์อินเตอร์.

