บทความวิจัย
ผลของการเคลื่อนผิวไปใต้เยื่อกระแสระหว่างสาร์ซ้าวัสี
กับโครอกซิฟิลลิเปิลแอลูไซส์ที่มีต่อคุณสมบัติ
ทางกายภาพของไก่
กุทิพนภัทร์ นิพิตรวัย¹ สาทิตา ทากุน¹ และ น้าหน กุรินธ์พิศาล*¹

ได้รับบทความ: 28 มีนาคม 2562
ได้รับบทความแก้ไข: 7 สิงหาคม 2562
ยื่นปรับติพิมพ์: 7 ตุลาคม 2562

บทคัดย่อ
การวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของสารเคลื่อนผิวไปใต้ 2 สารใช้ ได้แก่ สารที่ 1 สารซ้า
วัสี และสารที่ 2 สารผสมระหว่างสารซ้าวัสีกับโครอกซิฟิลลิเปิลแอลูไซส์ และเปรียบ
เปรียบคุณสมบัติทางกายภาพของไก่ 3 ชุดการทดลอง ได้แก่ ไก่ที่ไม่เคลื่อน ไก่ที่เคลื่อนผิวด้วย
สารซ้าวัสี และไก่ที่เคลื่อนผิวด้วยสารผสมระหว่างสารซ้าวัสีกับโครอกซิฟิลลิเปิลแอลูไซส์
โดยเปรียบเทียบคุณสมบัติทางกายภาพ 9 คุณสมบัติ เนื่องจากผลการวิจัยไม่พบว่า ไก่ทั้ง 3 ชุดการทดลองมีคุณสมบัติทาง
กายภาพ 9 คุณสมบัติที่แตกต่างกัน โดยใช้ไก่ที่เคลื่อนผิวด้วยสารผสมระหว่างสารซ้าวัสีกับโครอกซิ
ไฟลลิเปิลแอลูไซส์สามารถรักษาคุณสมบัติทางกายภาพของไก่ได้ทั้ง 9 คุณสมบัติได้ดีที่สุด นั่นเปรียบ
เทียบกับไก่ที่ไม่เคลื่อนและไก่ที่เคลื่อนผิวด้วยสารซ้าวัสี

คำสำคัญ: การเคลื่อนผิวไปใต้ สารซ้าวัสี โครอกซิฟิลลิเปิลแอลูไซส์ คุณสมบัติทางกายภาพ
ของไก่

¹ ภาควิชาระยุทธศาสตร์ทั่วไป คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
* ผู้ประสานงาน, email: numphon@g.swu.ac.th
Effect of Egg Coating with Mixture of Wheat Starch and Hydroxypropyl Methylcellulose on the Physical Qualities of Eggs

Kritiyaporn Nipornram¹, Sathita Thakan¹ and Numphon Koocharoenpisal¹*

ABSTRACT

The purposes of this research were to study effect of egg coating of 2 recipes; recipe 1: wheat starch, and recipe 2: mixture of wheat starch and hydroxypropyl methylcellulose (HPMC), and to compare the physical qualities of eggs on 3 sets including set 1: eggs non-coated, set 2: eggs coated with wheat starch, and set 3: eggs coated with mixture of wheat starch and hydroxypropyl methylcellulose. The data were collected to compare 9 physical qualities when stored at ambient temperature (28±3°C) for 35 days and to check the physical qualities of eggs on 0, 5, 10, 15, 20, 25, 30 and 35 days during experiment. The results indicated that the eggs coated with mixture of wheat starch and hydroxypropyl methylcellulose maintained the physical qualities of eggs better than eggs non-coated and eggs coated with wheat starch.

Keywords: Egg coating, Wheat starch, Hydroxypropyl Methylcellulose, Physical qualities of eggs

¹Department of General Science, Faculty of Science, Srinakharinwirot University
*Corresponding author, email: numphon@g.swu.ac.th
บทนำ

ไฟโคเป็นอาหารที่ได้รับความนิยมจากผู้บริโภคทั่วโลก เนื่องจากสามารถช่วยได้รับ รางวัล และมีคุณค่าทางโภชนาการสูงเพราะมีสารอาหารหลายชนิดที่จำเป็นต่ำกว่า โดยใช้ก็ที่สมบูรณ์จะมีโครงสร้างที่ประกอบด้วย 3 ส่วนสำคัญ ได้แก่ เปลือกไข่ 9-12% ไข่ขาวประมาณ 60% และไข่แดง 30-33% [1] ตั้งแต่ในอุณหภูมิที่ใกล้เคียงกันไข่ได้มีการเปลี่ยนแปลงคุณภาพได้เพียงเมื่อเก็บรักษาไว้ที่อุณหภูมิระหว่าง (28±3°C) และระยะเวลาการเก็บรักษาที่เพิ่มขึ้น ส่งผลให้คุณภาพของไข่ลดลง [2] อันเนื่องมาจากภาวะเปลี่ยนแปลงที่เกิดขึ้นภายใน เช่น การอยู่ในเส้นแบ่งนุ่มของเปลือกไข่ไว้ [3] ทำให้เนื้อหนักของไข่เกิดลดลงและช่องอากาศภายในไข่ขยายใหญ่ขึ้น โดยที่สูญเสียไปส่วนใหญ่มากกว่าที่จะได้ ความชื้นถึง 87.60% ในขณะที่ไข่แดงมีความชื้น 51.10% อีกอันนี้จากไข่ขาวสำหรับนั้นจะหายไปในไข่แดงผ่านทางเยื่อหุ้มไข่ตาลไข่แดงเปลือกไข่และสารสูญเสียเกิดจากผิวของเปลือกไข่ เช่น CO₂, NH₃ และ H₂S ซึ่งเกิดจากการสลายกิ่งต่างกิ่งของสารอินทรีย์ในไข่ [4] ทำให้ไข่ใต้ถูกสภาพลดลง เช่นกัน ดังนั้นการเปลี่ยนแปลงคุณภาพของไข่ได้ สามารถทำได้โดยการเก็บรักษาไข่ไว้ในอุณหภูมิต่ำ เมื่อต้องการมีที่สูงขึ้น วิธีนี้ไม่ใช่เพียงสิ่งที่จำเป็นสำหรับผู้ดำเนินการที่มีประเทศไทย จึงทำให้ไข่ที่รับประทานอยู่ ๆ สูญเสียคุณภาพเร็ว ส่งผลกระทบต่อคุณภาพของไข่ได้เป็นอย่างมาก อย่างไรก็ตาม นอกจากการเก็บรักษาไข่ให้ที่อุณหภูมิต่ำแล้ว การเคลือบด้วยไข่ได้เป็นอีกวิธีหนึ่งที่สามารถลดการเปลี่ยนแปลงคุณภาพของไข่ได้ แต่ปัจจุบันการใช้สารเคลือบที่เป็นน้ำมันหรือสารสังเคราะห์ ซึ่งมีประสิทธิผลดีสูง และอาจมีการใช้สารเคลือบบางที่จะจะให้เกิดอันตรายต่อกิ่งยอก [5-6] ดังนั้น ผู้ยิ่งข้องใจความสนใจใคร่จะคัสตาร์ได้สารประกอบไข่โคคลอเหลมที่เป็นสารเคลือบด้วยไข่ทำข้ามครอบคลุมที่สูงตามแบบที่บรรจุภัณฑ์ [7] นั้น น้ำมันเคลือบที่ทำจากน้ำของเปลือกไข่จะทำให้เกิดการเคลือบบางๆ ซึ่งช่วยลดการเปลี่ยนแปลงของความชื้นและลดการสูญเสียเกิดจากผิวนุ่มของเปลือกไข่ได้ ทำให้คุณภาพของไข่ที่ทำการด้านต่อมา ด้านกายภาพและด้านชีวภาพดังนี้ [8]

จากการศึกษาทางวิจัยของวรรณานิยม [9] พบว่าสารข้าวสาลีประกอบด้วยผลิตภัณฑ์คาร์-
ไตรซ์ซึ่งเป็นสารประกอบไข่โคคลอเหลมได้ในคุณค่าหลักคือ ไมโลนพิศว 74% และ อะโลนไพร 26% ซึ่งอะโลนไพรเป็นผลิตภัณฑ์สูงที่มีที่ต้องตั้งแต่กิ่งต่างกิ่ง α-1, 4-Glycosidic linkage ของยอกครึ่ง ตั้งแต่เป็นสารอาหารไม่มีการแตกต่างจึงทำให้อะโลนไพรเป็นพิมพ์ได้ด้วยตัวเอง (Self-supporting Film) สามารถใช้เป็นสารเคลือบเพื่อควบคุมอัตราการเปลี่ยนแปลงคุณภาพของวัตถุอื่นได้ เชน ผักผลไม้ รวมถึงอาหารบรรจุกล่อง นอกจากนี้ในโครงสร้างของสารข้าวสาลีประกอบด้วยผลิตภัณฑ์ที่สำคัญ 2 ชนิดคือ ไกลเดิน (Gliadin) และกลูเตนิน (Glutenin) ในอัตราส่วนที่ใกล้เคียงกัน โปรตีนคุณ 2 ชนิด จะส่งผ่านพาราไซคลิค (Disulfide bond) เข้าต่อกันเกิดเป็นโปรตีนกลูเตนที่มีคุณสมบัติที่เหนียว (Viscous properties) และกลูเตนินมีคุณสมบัติเชิงกลับลักษณะ (Elastic properties) ดังนั้น โปรตีนกลูเตนในสารข้าวสาลีมีสภาพกันย้อมและมีความเหนียว [10] ซึ่งเป็นคุณสมบัติในการเป็นสารก่อพิษมานาน ได้ และจากคุณสมบัติเหล่านี้ ผู้ยิ่งข้องใจให้เกิดการผลิตสารข้าวสาลีเป็นสารเคลือบด้วยไข่ เพื่อดูด การเปลี่ยนแปลงคุณภาพและรักษาคุณสมบัติทางกายภาพของไข่ให้แน่นอน.
จากการศึกษาทางวิจัยของอังเคิล จันทรพลพันธ์ และคณะ [2] มีการนำไฮโพรพิลไมเซลลูโลส (Hydroxypropyl methylcellulose) หรือ HPMC และสารที่มีส่วนผสมมาใช้ทำสารเคลือบผิวไปก่อน ซึ่งสามารถลดคุณภาพของไวท์ได้ในบางส่วน 28 วัน ผู้วิจัยจึงเลือกไวท์จะนำไฮโพรพิลไมเซลลูโลส (Hydroxypropyl methylcellulose) ซึ่งละลายได้ในการวิจัยครั้งนี้เนื่องจากสารเคลือบผิวของไฮโพรพิลไมเซลลูโลสเป็นสารใด้โดยในผลตัวที่เป็นแพทย์หรือที่เป็นสารคล้ายกัน (Semi-synthetic polymers) ได้จากการปรับปรุงคุณสมบัติของซิลิคอนโฟติกด้วยมีคุณสมบัติเป็นสารที่ทำให้เรียกว่าความสามารถในการรักษาคุณภาพของไวท์ได้ ซึ่งจะช่วยลดขั้นตอนและทำให้ง่ายขึ้นในการเก็บข้อมูลไว้ให้เจ้าหน้าที่ ลดการเปลี่ยนแปลงคุณภาพของไวท์ไปเนื่องจากปัญหาที่เกิดขึ้น แทนน้ำมันหรือสารสังเคราะห์ที่เปลี่ยนให้เกิดอันตรายต่อผู้บริโภคได้อีกหลาย

วัตถุประสงค์ของการวิจัย

1. เพื่อศึกษาผลของการเคลือบผิวไวท์ 2 สูตร ได้แก่ สูตรที่ 1 สารเคลือบผิวความเข้มข้นเริ่มต้น 2% (WS 2% (w/v)) และสูตรที่ 2 สารผสมระหว่างสารเคลือบผิวไฮโพรพิลไมเซลลูโลสความเข้มข้นเริ่มต้น 2% (WS 2% (w/v)+HPMC 2% (w/v))

2. เพื่อเปรียบเทียบคุณสมบัติทางกายภาพของไวท์ 3 ชุดการทดลองได้แก่ 1) ไข่เก็บไม่เคลือบ 2) ไข่เก็บเคลือบผิวขาวสารเคลือบผิวความเข้มข้นเริ่มต้น 2% (WS 2% (w/v)) และ 3) ไข่เก็บเคลือบผิวขาวสารผสมระหว่างสารเคลือบผิวไฮโพรพิลไมเซลลูโลสความเข้มข้นเริ่มต้น 2% (WS 2% (w/v)+HPMC 2% (w/v))

อุปกรณ์และวิธีการดำเนินการวิจัย

1. วัสดุและอุปกรณ์

ใช้ไข่สดจากไก่สายพันธุ์อังเคิล จำนวน (Lohmann Brown) จากฟาร์มเลี้ยงไข่ไก่ที่รายพล ต.บ้านเสรี อำเภอศรีชัย จังหวัดยางแงน ซึ่งเลี้ยงโดยใช้ระบบที่แบ่งแยกและอุปกรณ์ไข่เก็บไว้ในที่ที่มีอุณหภูมิที่เหมาะสม 60-65 กัมมัน ความยาว 43-44 มิลลิเมตร และความยาว 57-59 มิลลิเมตร จำนวน 72 องศา รูปลักษณะที่เหมาะสมกับอุปกรณ์ไข่ไก่

2. การเตรียมสารเคลือบผิวไวท์

2.1 การเตรียมสารเคลือบผิวไวท์สูตรที่ 1 สารเคลือบผิวความเข้มข้นเริ่มต้น 2% (WS 2% (w/v))
 élevé 16 กรัม และกลีเซอรอล 16 กรัม ในน้ำกลั่นปริมาตร 800 ลูกเบอร์แซดีนเตอร์ หากน้ำให้ความร้อนต่ำกว่าเครื่อง Hot plate magnetic stirrer ที่อุณหภูมิ 50 องศาเซลเซียส เป็นเวลา 30 นาที ได้สารเคลือบฝิ้นไปได้สูตรที่ 1 ที่มีความเข้มข้นเริ่มต้น 2% 2.2 การเตรียมสารเคลือบฝิ้นให้สูตรที่ 2 สารผสมระหว่างสารเคลือบสำลีกับไอไตรีฟิลเตร์เพื่อลูกเบอร์แซดีนเตอร์ให้ความเข้มข้น 95% ปริมาตร 320 ลูกเบอร์แซดีนเตอร์กับน้ำกลั่นปริมาตร 80 ลูกเบอร์แซดีนเตอร์ ในน้ำกลั่นปริมาตรที่ 2 ให้ความร้อนต่ำกว่าเครื่อง Hot plate magnetic stirrer ที่อุณหภูมิ 75 องศาเซลเซียส เป็นเวลา 30 นาที จากนั้นนำมาละลายในน้ำกลั่นที่ 1 ที่เตรียมไว้首饰ผลในน้ำกลั่นที่ 2 ภายในและให้ความร้อนต่ำที่อุณหภูมิ 50 องศาเซลเซียส เป็นเวลา 15 นาที ได้สารเคลือบฝิ้นไปได้สูตรที่ 2 ที่มีความเข้มข้นเริ่มต้น 2% 3. การเตรียมฝิ้นให้กับเปรียบเทียบคุณสมบัติต่างกายภาพของใช้ 3.1 การเตรียมฝิ้นให้กับเปรียบเทียบคุณสมบัติต่างกายภาพของใช้ เตรียมฝิ้นให้กับเปรียบเทียบคุณสมบัติความยืดหยุ่น 8 ฝั่ง จุ๊มให้คงอยู่ 1 ผ่องในสารเคลือบที่เตรียมไว้เบื้องเครื่อง Hot plate magnetic stirrer ที่อุณหภูมิ 50 องศาเซลเซียส เป็นเวลา 15 วินาที ดักริ่อ ใส่สูตรที่ 1 สารเคลือบสำลีกับไอไตรีฟิลเตร์เพื่อลูกเบอร์แซดีนเตอร์ให้ความเข้มข้น 3 ช่องการทดลองได้แก่ ใช้ไม่เคลือบ ใช้กับเสื้อผ้าวัสดุที่มีผสมระหว่างสารเคลือบสำลีกับไอไตรีฟิลเตร์เพื่อลูกเบอร์แซดีนเตอร์ ใช้ในแนวฝิ้นกับสารเคลือบที่ไม่เป็นผ้า วางไว้ในที่ต้องละและมีแสงสว่างอิสระ ต่ออุณหภูมิห้องเดียว 28±3 °C เป็นเวลา 35 วัน ทำการตรวจสอบคุณสมบัติต่างกายภาพของใช้กัน 8 ครั้ง ครั้งละ 3 ฝั่งต่อ 1 ชุดการทดลอง (ทำการทดลอง 3 ชั่วโมง) ในวันที่ 0, 5, 10, 15, 20, 25, 30 และ 35 ของการเก็บรักษา 3.2 เปรียบเทียบคุณสมบัติต่างกายภาพของใช้ ทำการเปรียบเทียบคุณสมบัติต่างกายภาพของใช้กันที่ 3 ชุดการทดลอง ได้แก่ ใช้ที่ไม่เคลือบ ใช้กับที่เคลือบฝิ้นตัวสารเคลือบสำลีกับไอไตรีฟิลเตร์เพื่อลูกเบอร์แซดีนเตอร์ ใช้กับอุณหภูมิห้องเดียว อยู่ที่อุณหภูมิที่ 28±3 °C เป็นเวลา 35 วัน ทำการตรวจสอบคุณสมบัติต่างกายภาพของใช้กัน 8 ครั้ง ครั้งละ 3 ฝั่งต่อ 1 ชุดการทดลอง (ทำการทดลอง 3 ชั่วโมง) ในวันที่ 0, 5, 10, 15, 20, 25, 30 และ 35 ของการเก็บรักษา 3.2.1 น้ำหนักฝิ้นให้คงอยู่ โดยชั่วขณะน้ำหนักฝิ้นกับอุณหภูมิที่ 28±3 °C ตั้งคงไว้ ครั้งละ 1 ฝั่ง และบันทึกน้ำหนักฝิ้นให้คงอยู่ในแต่ละชุดการทดลอง วารสารวิทยาศาสตร์ มหาวิทยาลัยมหิดล 2563 193
3.2.2 ความสูงไข่ขาว โดยดักกลิ่นไข่ลงในกลไก แล้วใช้เวอร์ชี่ديلิปอร์จำแนก
ความสูงของไข่ขาว โดยจับผลิตภัณฑ์ที่สูงมสุด 3 ตัวแห่งรายไข่แล้วในบริเวณที่ใกล้ไข่แต่ละตัวที่สุด จาก
นั้นนักวิจัยความสูงที่ได้มาหาค่าเฉลี่ย แสดงดังรูปที่ 1

รูปที่ 1 การวัดความสูงไข่ขาวด้วยเวอร์ชี่ديلิปอร์ด้านลึก

3.2.3 ค่าความสูงของไข่ขาว (Haugh Unit) โดยใช้สูตรการคำนวณ
(HU) = 100 \text{log}_{10} (H-1.7W^{0.37} + 7.6) เมื่อ H = ความสูงไข่ขาวชั้น (มิลลิเมตร) และ W = หัวหน้าไข่พื้น
(กรัม) นับที่ค่าความสูงของไข่ขาวที่ได้จากการคำนวณ จากนั้นนักวิจัยที่คำนวณได้มาแล้วเก็บข้อมูลไข่ให้
ตามมาตรฐานของ USDA (2000) [12] โดย Haugh Unit (HU) มากกว่า 72 คือเกรด AA, 71-60 คือ
เกรด A, 59-31 คือเกรด B และน้อยกว่า 30 คือเกรด C

3.2.4 เส้นผ่านศูนย์กลางไข่แดง โดยใช้กล้อขนานด้านนอกของไข่ขาว
(ศูนย์กลางไข่แดง) เส้นผ่านศูนย์กลางไข่แดงด้านหน้าของไข่แดงด้านหนึ่ง จากนั้นอ่านค่าที่ได้และบันทึกผล แสดงดังรูปที่ 2 (a)

3.2.5 ความสูงไข่แดง โดยใช้เวอร์ชี่ديلิปอร์ด้านลึกวัดที่ข้อมของไข่แดง และอ่านค่า
ในตัวแทนที่สูงที่สุดของไข่แดง แสดงดังรูปที่ 2 (b)

รูปที่ 2 การวัดเส้นผ่านศูนย์กลางและความสูงไข่แดงด้วยเวอร์ชี่ديلิปอร์ (a) การวัดเส้นผ่าน
ศูนย์กลางไข่แดงด้วยปั๊มขนานด้านนอกของไข่ขาว (b) การวัดความสูงไข่
แดงด้วยเวอร์ชี่ديلิปอร์ด้านลึก

3.2.6 ดัชนีไข่แดง โดยใช้สูตรการคำนวณค่าดัชนีไข่แดง [13] YI = YH/YD เมื่อ
YI = ดัชนีไข่แดง YH = ความสูงไข่แดง (มิลลิเมตร) และ YD = เส้นผ่านศูนย์กลางไข่แดง (มิลลิเมตร)
และบันทึกค่าดัชนีไข่แดงที่ได้
3.2.7 ความสูงของยางในพื้นที่โดยใช้ปากกรอบขนาดภายในออกของวัสดุรูปรูปภาพ วัดความสูงของยางในพื้นที่โดยใช้ปากกรอบภายในออกที่น้ำยางของยางด้านในพื้นที่โดยใช้ อ่านค่าที่ได้แล้วบันทึกผล แสดงด้วยรูปที่ 3

รูปที่ 3 การวัดความสูงของยางในพื้นที่ด้วยปากกรอบขนาดภายในออกของวัสดุรูปรูปภาพ

3.2.8 น้ำหนักไข่ขาว โดยใช้ยูเปอร์น้ำหนักไข่กันไข่แดงออกมากัน น้ำหนักไข่ที่แยกได้ ไปจับแบ่งครึ่งดัดแปลงและนับถัวค่าน้ำหนักไข่ขาวที่ได้

3.2.9 น้ำหนักไข่แดง โดยใช้ยูเปอร์น้ำหนักไข่กันไข่แดงออกมากัน น้ำหนักที่แยกได้ ไปจับแบ่งครึ่งดัดแปลงและนับถัวค่าน้ำหนักไข่แดงที่ได้

ผลการวิจัย

1. การเคลือบผิวไข่

ลักษณะของเปลือกไข่ก่อหลังการเคลือบเมื่อเรียบเทียบกับไข่ที่ไม่เคลือบ พบว่าไข่ที่ไม่เคลือบ มีลักษณะสัมผัสของเปลือกที่หยาบและชุมชน ในขณะที่ไข่ที่เคลือบด้วยสารละลายที่เปลือกมีลักษณะเป็นลื่นชุ่มและมีลักษณะที่เปลือกนุ่ม ไข่กุ้กที่เคลือบด้วยสารละลายทางสารละลายกับไตรโอซิโฟอิโอดีอะโซโลที่เปลือกมีลักษณะขาว ใส และมีลักษณะเรียบเนียน แสดงด้วยรูปที่ 4

(а) (b) (c)

รูปที่ 4 ลักษณะของเปลือกไข่กุ้ก (а) ไข่ที่ไม่เคลือบ (b) ไข่ที่เคลือบด้วย WS 2% (w/v) (c) ไข่ที่เคลือบด้วย WS 2% (w/v) + HPMC 2% (w/v)
2. เปรียบเทียบคุณสมบัติทางกายภาพของไข่กิ

หลังเก็บไข่กิไปทั้ง 3 ชุดการทดลองไข่กิที่อุณหภูมิห้อง (28 ± 3°C) เป็นเวลา 35 วัน ผลการวิจัยพบว่า จากรายการที่ 1 น้ำหนักของไข่กิแสดงให้เห็นว่าไข่กิไม่เคลือบ เคลือบด้วย WS 2% (w/v) และเคลือบด้วย WS 2% (w/v)+HPMC 2% (w/v) มีน้ำหนักลดลง 10.60, 7.19 และ 5.33 กรัมตามลำดับ

ตารางที่ 1 น้ำหนักของไข่กิที่ไม่เคลือบ เคลือบ WS 2% (w/v) และเคลือบ WS 2% (w/v)+HPMC 2% (w/v)

<table>
<thead>
<tr>
<th>ระยะเวลา (วัน)</th>
<th>น้ำหนักของไข่กิคงพอง (g)</th>
<th>ไม่เคลือบ</th>
<th>เคลือบ WS 2% (w/v)</th>
<th>เคลือบ WS 2% (w/v)+HPMC 2% (w/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>SD</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>62.40</td>
<td>0.41</td>
<td>62.31</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>60.16</td>
<td>0.67</td>
<td>60.65</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>59.30</td>
<td>0.93</td>
<td>59.91</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>59.08</td>
<td>0.16</td>
<td>59.47</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>58.11</td>
<td>1.78</td>
<td>59.22</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>56.63</td>
<td>2.20</td>
<td>59.14</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>54.32</td>
<td>2.48</td>
<td>56.94</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>51.80</td>
<td>1.11</td>
<td>55.12</td>
</tr>
</tbody>
</table>

จากตารางที่ 2 ความสูงไข่ขาว แสดงให้เห็นว่าไข่กิที่ไม่เคลือบ เคลือบด้วย WS 2% (w/v) และเคลือบด้วย WS 2% (w/v)+HPMC 2% (w/v) มีความสูงไข่ขาวลดลง 3.32, 3.13 และ 2.98 มิลลิเมตรตามลำดับ
ตารางที่ 2 ความสูงใจเอวของไข่กินที่ไม่เคลือบ เกลือบ WS 2% (w/v) และเคลือบ WS 2% (w/v)+HPMC 2% (w/v)

<table>
<thead>
<tr>
<th>ระยะเวลา (วัน)</th>
<th>ความสูงใจเอว (mm)</th>
<th>ไม่เคลือบ</th>
<th>เกลือบ WS 2% (w/v)</th>
<th>เกลือบ WS 2% (w/v)+HPMC 2% (w/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>SD</td>
<td>r</td>
<td>SD</td>
</tr>
<tr>
<td>0</td>
<td>5.43</td>
<td>0.33</td>
<td>5.58</td>
<td>0.12</td>
</tr>
<tr>
<td>5</td>
<td>4.58</td>
<td>0.47</td>
<td>4.85</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>3.93</td>
<td>0.24</td>
<td>4.42</td>
<td>0.15</td>
</tr>
<tr>
<td>15</td>
<td>3.05</td>
<td>0.48</td>
<td>3.78</td>
<td>0.77</td>
</tr>
<tr>
<td>20</td>
<td>2.45</td>
<td>0.15</td>
<td>3.57</td>
<td>0.48</td>
</tr>
<tr>
<td>25</td>
<td>2.65</td>
<td>0.13</td>
<td>3.20</td>
<td>0.69</td>
</tr>
<tr>
<td>30</td>
<td>2.17</td>
<td>0.10</td>
<td>2.45</td>
<td>0.05</td>
</tr>
<tr>
<td>35</td>
<td>2.11</td>
<td>0.04</td>
<td>2.45</td>
<td>0.03</td>
</tr>
</tbody>
</table>

จากตารางที่ 3 ค่า HU แสดงให้เห็นว่าไข่กินที่ไม่เคลือบเปลี่ยนแปลงต่ำกว่าไข่จากเกรด AA เป็นเกรด A ในวันที่ 5 ไข่กินที่เคลือบด้วย WS 2% (w/v) เปลี่ยนแปลงต่ำกว่าไข่จากเกรด AA เป็นเกรด A ในวันที่ 5 และไข่กินที่เคลือบด้วย WS 2% (w/v)+HPMC 2% (w/v) เปลี่ยนแปลงต่ำกว่าไข่จากเกรด AA เป็นเกรด A ในวันที่ 15

ตารางที่ 3 ค่า HU ของไข่กินที่ไม่เคลือบ เกลือบ WS 2% (w/v) และเคลือบ WS 2% (w/v)+HPMC 2% (w/v)

<table>
<thead>
<tr>
<th>ระยะเวลา (วัน)</th>
<th>ค่าความเสถียรของไข่ขาว (HU)</th>
<th>ไม่เคลือบ</th>
<th>เกลือบ WS 2% (w/v)</th>
<th>เกลือบ WS 2% (w/v)+HPMC 2% (w/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>SD</td>
<td>r</td>
<td>SD</td>
</tr>
<tr>
<td>0</td>
<td>72.52</td>
<td>1.77</td>
<td>73.42</td>
<td>2.13</td>
</tr>
<tr>
<td>5</td>
<td>67.24</td>
<td>0.61</td>
<td>67.33</td>
<td>0.43</td>
</tr>
<tr>
<td>10</td>
<td>58.47</td>
<td>2.25</td>
<td>63.45</td>
<td>2.18</td>
</tr>
<tr>
<td>15</td>
<td>46.74</td>
<td>7.04</td>
<td>56.14</td>
<td>1.03</td>
</tr>
<tr>
<td>20</td>
<td>39.53</td>
<td>1.10</td>
<td>53.93</td>
<td>5.99</td>
</tr>
<tr>
<td>25</td>
<td>36.68</td>
<td>2.31</td>
<td>43.61</td>
<td>1.37</td>
</tr>
<tr>
<td>30</td>
<td>23.15</td>
<td>2.25</td>
<td>24.77</td>
<td>1.02</td>
</tr>
<tr>
<td>35</td>
<td>23.86</td>
<td>0.93</td>
<td>24.22</td>
<td>0.41</td>
</tr>
</tbody>
</table>
จากตารางที่ 4 เส้นผ่านศูนย์กลางไข่แดง แสดงให้เห็นว่าไข่ก่ำไม่เคลือบ เคลือบด้วย WS 2% (w/v) และเคลือบด้วย WS 2% (w/v)+HPMC 2% (w/v) มีเส้นผ่านศูนย์กลางไข่แดงเพิ่มขึ้น 29.29, 19.72 และ 9.75 มิลลิเมตร ตามล่าดับ

ตารางที่ 4 เส้นผ่านศูนย์กลางไข่แดงของไข่ก่ำไม่เคลือบ เคลือบ WS 2% (w/v) และเคลือบ WS 2% (w/v)+HPMC 2% (w/v)

<table>
<thead>
<tr>
<th>ระยะเวลา (วัน)</th>
<th>เส้นผ่านศูนย์กลางไข่แดง (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ไม่เคลือบ</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>42.01</td>
</tr>
<tr>
<td>5</td>
<td>46.00</td>
</tr>
<tr>
<td>10</td>
<td>47.25</td>
</tr>
<tr>
<td>15</td>
<td>51.70</td>
</tr>
<tr>
<td>20</td>
<td>55.43</td>
</tr>
<tr>
<td>25</td>
<td>55.10</td>
</tr>
<tr>
<td>30</td>
<td>69.60</td>
</tr>
<tr>
<td>35</td>
<td>71.30</td>
</tr>
</tbody>
</table>

จากตารางที่ 5 ความสูงไข่แดง แสดงให้เห็นว่าไข่ก่ำไม่เคลือบ เคลือบด้วย WS 2% (w/v) และเคลือบด้วย WS 2% (w/v)+HPMC 2% (w/v) มีความสูงไข่แดงลดลง 11.63, 9.09 และ 6.16 มิลลิเมตร ตามล่าดับ
ตารางที่ 5 ความสูงใช้แดงของไข่ที่ไม่เคลือบ เคลือบ WS 2% (w/v) และเคลือบ WS 2% (w/v)+HPMC 2% (w/v)

<table>
<thead>
<tr>
<th>ระยะเวลา (วัน)</th>
<th>ความสูงใช้แดง (mm)</th>
<th>ไม่เคลือบ</th>
<th>เคลือบ WS 2% (w/v)</th>
<th>เคลือบ WS 2% (w/v)+HPMC 2% (w/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ร</td>
<td>SD</td>
<td>ร</td>
<td>SD</td>
</tr>
<tr>
<td>0</td>
<td>14.70</td>
<td>0.35</td>
<td>14.92</td>
<td>0.51</td>
</tr>
<tr>
<td>5</td>
<td>12.03</td>
<td>0.08</td>
<td>13.25</td>
<td>1.90</td>
</tr>
<tr>
<td>10</td>
<td>10.62</td>
<td>1.07</td>
<td>11.58</td>
<td>1.33</td>
</tr>
<tr>
<td>15</td>
<td>8.55</td>
<td>1.60</td>
<td>10.58</td>
<td>1.94</td>
</tr>
<tr>
<td>20</td>
<td>6.73</td>
<td>1.49</td>
<td>8.78</td>
<td>1.65</td>
</tr>
<tr>
<td>25</td>
<td>4.57</td>
<td>0.32</td>
<td>7.97</td>
<td>1.00</td>
</tr>
<tr>
<td>30</td>
<td>4.10</td>
<td>0.48</td>
<td>6.10</td>
<td>1.00</td>
</tr>
<tr>
<td>35</td>
<td>3.07</td>
<td>0.13</td>
<td>5.83</td>
<td>0.85</td>
</tr>
</tbody>
</table>

จากตารางที่ 6 ตัวนี้ใช้แดง แสดงให้เห็นว่าไข่ที่ไม่เคลือบ เคลือบด้วย WS 2% (w/v) และเคลือบด้วย WS 2% (w/v)+HPMC 2% (w/v) มีค่าตัวนี้ใกล้เคียง 0.31, 0.27 และ 0.18 ตามลำดับ

ตารางที่ 6 ตัวนี้ใช้แดงของไข่ที่ไม่เคลือบ เคลือบ WS 2% (w/v) และเคลือบ WS 2% (w/v)+HPMC 2% (w/v)

<table>
<thead>
<tr>
<th>ระยะเวลา (วัน)</th>
<th>ตัวนี้ใช้แดง</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ไม่เคลือบ</td>
</tr>
<tr>
<td></td>
<td>ร</td>
</tr>
<tr>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>0.26</td>
</tr>
<tr>
<td>10</td>
<td>0.23</td>
</tr>
<tr>
<td>15</td>
<td>0.17</td>
</tr>
<tr>
<td>20</td>
<td>0.12</td>
</tr>
<tr>
<td>25</td>
<td>0.08</td>
</tr>
<tr>
<td>30</td>
<td>0.06</td>
</tr>
<tr>
<td>35</td>
<td>0.04</td>
</tr>
</tbody>
</table>
จากตารางที่ 7 ความสูงช่องอากาศ แสดงให้เห็นว่าไม่ได้กัก เคลือบด้วย WS 2% (w/v) และเคลือบด้วย WS 2% (w/v)+HPMC 2% (w/v) มีความสูงช่องอากาศเพิ่มขึ้น 12.68, 12.84 และ 9.19 มิลลิเมตร ตามลำดับ

ตารางที่ 7 ความสูงช่องอากาศของไข่กักที่ไม่เคลือบ เคลือบ WS 2% (w/v) และเคลือบ WS 2% (w/v)+HPMC 2% (w/v)

<table>
<thead>
<tr>
<th>ระยะเวลา (วัน)</th>
<th>ความสูงช่องอากาศ (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ไม่เคลือบ</td>
<td>เคลือบ WS 2% (w/v)</td>
<td>เคลือบ WS 2% (w/v)+HPMC 2% (w/v)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ร</td>
<td>SD</td>
<td>ร</td>
<td>SD</td>
<td>ร</td>
</tr>
<tr>
<td>0</td>
<td>3.45</td>
<td>0.44</td>
<td>3.36</td>
<td>0.36</td>
<td>3.78</td>
</tr>
<tr>
<td>5</td>
<td>8.03</td>
<td>0.78</td>
<td>7.22</td>
<td>0.78</td>
<td>6.20</td>
</tr>
<tr>
<td>10</td>
<td>9.25</td>
<td>0.20</td>
<td>9.58</td>
<td>0.20</td>
<td>8.75</td>
</tr>
<tr>
<td>15</td>
<td>10.48</td>
<td>0.48</td>
<td>10.43</td>
<td>0.48</td>
<td>10.33</td>
</tr>
<tr>
<td>20</td>
<td>11.32</td>
<td>1.03</td>
<td>11.70</td>
<td>1.03</td>
<td>11.18</td>
</tr>
<tr>
<td>25</td>
<td>14.30</td>
<td>1.48</td>
<td>13.90</td>
<td>0.96</td>
<td>10.31</td>
</tr>
<tr>
<td>30</td>
<td>15.53</td>
<td>0.58</td>
<td>14.96</td>
<td>1.33</td>
<td>11.41</td>
</tr>
<tr>
<td>35</td>
<td>16.13</td>
<td>0.38</td>
<td>16.20</td>
<td>0.35</td>
<td>12.97</td>
</tr>
</tbody>
</table>

จากตารางที่ 8 น้ำหนักไข่ขาว แสดงให้เห็นว่าไข่กักที่ไม่เคลือบ เคลือบด้วย WS 2% (w/v) และเคลือบด้วย WS 2% (w/v)+HPMC 2% (w/v) มีน้ำหนักไข่ขาวลดลง 9.41, 7.98 และ 7.40 กรัม ตามลำดับ

ตารางที่ 8 น้ำหนักไข่ขาวของไข่กักที่ไม่เคลือบ เคลือบ WS 2% (w/v) และเคลือบ WS 2% (w/v)+HPMC 2% (w/v)

<table>
<thead>
<tr>
<th>ระยะเวลา (วัน)</th>
<th>น้ำหนักไข่ขาว (g)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ไม่เคลือบ</td>
<td>เคลือบ WS 2% (w/v)</td>
<td>เคลือบ WS 2% (w/v)+HPMC 2% (w/v)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ร</td>
<td>SD</td>
<td>ร</td>
<td>SD</td>
<td>ร</td>
</tr>
<tr>
<td>0</td>
<td>35.14</td>
<td>1.18</td>
<td>35.31</td>
<td>1.02</td>
<td>35.54</td>
</tr>
<tr>
<td>5</td>
<td>33.70</td>
<td>1.05</td>
<td>36.80</td>
<td>2.77</td>
<td>35.62</td>
</tr>
<tr>
<td>10</td>
<td>34.69</td>
<td>1.03</td>
<td>34.99</td>
<td>1.50</td>
<td>35.08</td>
</tr>
<tr>
<td>15</td>
<td>33.28</td>
<td>1.46</td>
<td>35.08</td>
<td>1.22</td>
<td>35.63</td>
</tr>
<tr>
<td>20</td>
<td>33.38</td>
<td>1.50</td>
<td>34.15</td>
<td>1.15</td>
<td>35.26</td>
</tr>
<tr>
<td>25</td>
<td>31.72</td>
<td>0.17</td>
<td>31.49</td>
<td>2.63</td>
<td>33.17</td>
</tr>
<tr>
<td>30</td>
<td>28.50</td>
<td>1.50</td>
<td>30.47</td>
<td>0.61</td>
<td>31.83</td>
</tr>
<tr>
<td>35</td>
<td>25.73</td>
<td>0.44</td>
<td>27.33</td>
<td>1.08</td>
<td>28.41</td>
</tr>
</tbody>
</table>
จากตารางที่ 9 น้ำหนักไข่แดง แสดงให้เห็นว่าไข่ที่ไม่เคลือบ เคลือบด้วย WS 2% (w/v) และเคลือบด้วย WS 2% (w/v)+HPMC 2% (w/v) มีน้ำหนักไข่แดงเพิ่มขึ้น 6.49, 7.20 และ 5.75 กรัมตามลำดับ

ตารางที่ 9 น้ำหนักไข่แดงของไข่ที่ไม่เคลือบ เคลือบ WS 2% (w/v) และเคลือบ WS 2% (w/v)+HPMC 2% (w/v)

<table>
<thead>
<tr>
<th>ระยะเวลา (วัน)</th>
<th>น้ำหนักไข่แดง (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ไม่เคลือบ</td>
</tr>
<tr>
<td></td>
<td>ร</td>
</tr>
<tr>
<td>0</td>
<td>15.77</td>
</tr>
<tr>
<td>5</td>
<td>16.08</td>
</tr>
<tr>
<td>10</td>
<td>16.23</td>
</tr>
<tr>
<td>15</td>
<td>17.39</td>
</tr>
<tr>
<td>20</td>
<td>17.60</td>
</tr>
<tr>
<td>25</td>
<td>18.27</td>
</tr>
<tr>
<td>30</td>
<td>21.85</td>
</tr>
<tr>
<td>35</td>
<td>22.26</td>
</tr>
</tbody>
</table>

สรุปผลการวิจัย

1. การเคลือบผิวไข่

จากการศึกษาการเคลือบผิวไข่ พบว่า ไข่ที่เคลือบด้วยสารชีวสารสิ่งที่ส่วนเล็กน้อยมีลักษณะเป็นสีขาวชูและสีอ่อนมีแสงผ่านของเปลือยย่อยเส้นใยซึ่งแตกต่างจากไข่ที่เคลือบด้วยสารผสมระหว่างสารชีวสารสิ่งกับไตรซีฟิมิเติลเซลลูโลสที่ผิวเปลือยไข่จะมีลักษณะวาว ใส และผิวมันสัมของเปลือยเรียบเนียน

2. เปรียบเทียบคุณสมบัติทางกายภาพของไข่

จากการศึกษาระบบคุณสมบัติทางกายภาพของไข่ พบว่า เมื่อเก็บรักษาไข่ทำให้สูง 3 ชั่วโมงติดต่อกันได้แก่ ไข่ที่ไม่เคลือบ ไข่ที่เคลือบด้วยสารชีวสารสิ่ง และไข่ที่เคลือบด้วยสารผสมระหว่างสารชีวสารสิ่งกับไตรซีฟิมิเติลเซลลูโลส ใช้ที่อุณหภูมิห้อง (28±3°C) เป็นเวลา 35 วัน ผลการวิจัยสรุปได้ว่าสารเคลือบผิวไข่ที่ละลายสารเคลือบสูงสุดที่ 2 สารผสมระหว่างสารชีวสารสิ่งกับไตรซีฟิมิเติลเซลลูโลส สามารถรักษาคุณสมบัติทางกายภาพของไข่ทำให้สูง คุณสมบัติไข่ดีที่สุด โดยมีน้ำหนักไข่ที่ชั้นฟอง ความสูงไข่ด่าง ความสุกไข่แตก ค่าดัชนีไข่แตกและน้ำหนักไข่ขาวลดลงน้อยที่สุด รวมถึงมีค่าสูงผ่านสุนัขกลางไข่แตก ความสุกของช่องอากาศในไข่และน้ำหนักไข่แตกเพิ่มขึ้นน้อยที่สุด
อภิปรายผลการวิจัย

1. การเคลื่อนที่ริด

จากวิจัยพบว่า ไข่ที่เคลื่อนด้วยสารคายเชื้อเพาะที่มีสีเขียวจะมีลักษณะเป็นเสิร์ฟคูณและฝักสีของเปลือกกลายเป็นสีเขียว และมีสีสันของเปลือกกลายเป็นสีเขียวด้วยสารคายเชื้อเพาะเป็นสารประกอบโดยรอตตัวผลผลิต มีสัมประสิทธิ์การละลายน้ำและทำให้เกิดสาร.addColumnที่มีลักษณะเป็นคลัสต์เลยที่ความกักเหงื่อ เมื่อเคลื่อนที่ ฝักเปลือกไข่ได้ทำให้มีลักษณะเป็นเสิร์ฟคูณ และฝักสีของเปลือกกลายเป็นสีเขียวด้วยสารคายเชื้อเพาะมีคุณสมบัติเป็นการเพิ่มความหนืดและเพิ่มความคงที่ซึ่งมีลักษณะเป็นแรงไข่ ไม่มีสี เมื่อเคลื่อนที่ฝักเปลือกไข่ได้ทำให้สารคายเชื้อเพาะที่ฝั่งเปลือกไข่ได้ที่และมีลักษณะมันสี ฝักสีของเปลือกกลายเป็นสีเขียว

2. เปรียบเทียบคุณสมบัติทางกายภาพของไข่ไข่

จากการตรวจสอบคุณสมบัติทางกายภาพของไข่ไข่ เฉพาะ 3 ชุดการทดลองได้แก่ไข่ไข่ที่ฝักเปลือกไข่มีสีเขียวด้วยสารคายเชื้อเพาะที่มีสีสันของเปลือกกลายเป็นสีเขียวด้วยสารคายเชื้อเพาะ เป็นผลผลิต (28±3°C) เป็นเวลา 35 วัน ผลการวิจัยพบว่าไข่ไข่ที่ฝักเปลือกไข่มีสีเขียวด้วยสารคายเชื้อเพาะที่มีสีสันของเปลือกกลายเป็นสีเขียวด้วยสารคายเชื้อเพาะ มีคุณสมบัติเป็นการเพิ่มความหนืดและเพิ่มความคงที่ซึ่งมีลักษณะเป็นแรงไข่ ไม่มีสี เมื่อเคลื่อนที่ฝักเปลือกไข่ได้ทำให้สารคายเชื้อเพาะที่ฝั่งเปลือกไข่ได้ที่และมีลักษณะมันสี ฝักสีของเปลือกกลายเป็นสีเขียว

ชุดการทดลองไข่ไข่ที่ฝักเปลือกไข่น้ำมีสีเขียวด้วยสารคายเชื้อเพาะที่มีสีสันของเปลือกกลายเป็นสีเขียวด้วยสารคายเชื้อเพาะ มีคุณสมบัติเป็นการเพิ่มความหนืดและเพิ่มความคงที่ซึ่งมีลักษณะเป็นแรงไข่ ไม่มีสี เมื่อเคลื่อนที่ฝักเปลือกไข่ได้ทำให้สารคายเชื้อเพาะที่ฝั่งเปลือกไข่ได้ที่และมีลักษณะมันสี ฝักสีของเปลือกกลายเป็นสีเขียว
คือตัวที่ได้จากการนำความสูญและสัมผัสผ่านอย่างต่อเนื่องได้ผลในรูปแบบตามสมการ เพื่อให้ได้ค่าดัชนีไข่แดง ซึ่งเป็นค่ามาตรฐานที่ใช้กับคุณภาพไข่ ค่าดัชนีไข่ได้มาจากผลต่อสัมผัสกับความสมดุล แต่หากไข่ ที่มีระยะเวลาเก็บรักษาที่นาน ดังนั้นไข่แดงจะมีค่าลดลง เมื่อเก็บรักษาไข่ไว้เป็นเวลา 35 วัน ค่าดัชนีไข่แดงจึงลดลง 0.31, 0.27 และ 0.18 ตามลำดับ จากการที่ความสูญของช่องอากาศในไข่มีขนาดเพิ่มขึ้น 12.68, 12.84 และ 9.19 มิลลิเมตร ตามลำดับ อายุเป็นผลจากการสูญเสียแก่และความชื้นผ่านรูปลีกไข่กักได้ก็ให้เกิดช่องอากาศภายในไข่ขึ้น หากมีการสูญเสียแก่และความชื้นมาก ช่องอากาศในฟองไข่กักจะขยายใหญ่ขึ้น รวมถึงหน้ากากไข่แดงลดลง 9.41, 7.98 และ 7.40 กรัม และหน้ากากไข่แดงเพิ่มขึ้น 6.49, 7.20 และ 5.75 กรัม ตามลำดับ อีกเนื้อหาที่โครงสร้างของไข่กักประกอบด้วยไข่ขาวข้น 60% ไข่แดงที่มีหน้ากากไข่ขาวและไข่แดงจะมีหน้ากากมากขึ้น [15] แต่เมื่อระยะเวลาเก็บรักษาไข่กักเพิ่มขึ้นไข่ขาวที่มีประกอบกลไกในตัวเสียขึ้นอยู่เพิ่มขึ้น 87.60% จะมีการสูญเสียความชื้นออกไปผ่านทางรูปลีกไข่กักเป็นเหตุให้ไข่ขาวมีหน้ากากลดลง และเนื่องจากไข่ขาวมีความเด้งข้นน้อยกว่าไข่แดง น้ำยาไข่ขาวส่วนใหญ้จะแห้งไข่แดงด้วยการระดับออกซิเดส (Osmotic Pressure) ผ่านทางเยื่อหุ้มไข่แดงทำให้ไข่แดงมีขนาดใหญ่ขึ้นและมีหน้ากากเพิ่มขึ้น

จากผลการวิจัยสรุปโดยได้ทำได้การผลิตไข่กักได้สารละลายสูตรที่ 2 สารผสมระหว่างสารละลายสูตรกับไข่ไข่ขาวที่มีผลซึ่งมีผลต่อไข่ขาวข้น 9 คุณสมบัติที่ที่สูง ทั้งนี้อาจเป็นผลมาจากสารละลายสูตรที่ 2 มีส่วนผสมของไข่ไข่ขาวที่มีผลซึ่งมีการเพิ่มความนิ่มและความเด้ง ทำให้สารละลายเก็บสารผ่านรูปลีกไข่กักได้ดีและมีประสิทธิภาพ ซึ่งข้อผลการผ่านเข้าของแก่และความชื้นผ่านทางรูปลีกไข่กักอันเนื่องสารละลายที่ทำให้ไข่สูญเสียแก่ข้นสูงสุดที่มีวิธีการอัธยาธ บางส่วนที่มีการผลิตไข่ขาวที่มีผลซึ่งมีผลต่อไข่กักได้เป็นพิเศษบางสุด ตัวเองไข่ไข่ขาวที่มีผลซึ่งมีผลต่อไข่ขาวข้นที่มีการผลิตไข่ขาวข้นและเพื่อป้องกันการสูญเสียข้นของความนิ่มและเป็นภัยการที่มีขึ้นช่วยอย่างดูช่องไข่กักให้เกิดรักษาในถังตู้มีห้องได้เป็นอย่างดี

เอกสารอ้างอิง