จากการสืบเสาะตามวัฏจักร 5Es สู่การสืบเสาะที่มีทฤษฎีชี้นำ

ลือชา ลดาชาติ, ลฎาภา ลดาชาติ

Abstract


ประเทศไทยได้ส่งเสริมการจัดการเรียนการสอนวิทยาศาสตร์โดยการสืบเสาะมาเป็นเวลานาน แนวทางหนึ่งที่ได้รับการสนับสนุนอย่างกว้างขวางคือการสืบเสาะตามวัฏจักร 5Es ในขณะที่งานวิจัยก่อนนี้หน้ามุ่งอธิบายข้อจำกัดของการจัดการเรียนการสอนตามแนวทางนี้ โดยการมุ่งเป้าไปที่การขาดความเข้าใจของครูเป็นหลัก บทความนี้จึงนำเสนออีกมุมมองหนึ่งว่า วัฏจักร 5Es เองก็มีข้อ จำกัดบางประการ ซึ่งไม่สะท้อนลักษณะสำคัญของการสร้างความรู้ของนักวิทยาศาสตร์อย่างชัดเจน ได้แก่ บทบาทของทฤษฎีที่ชี้นำกระบวนการสืบเสาะ และการโต้แย้งทางวิทยาศาสตร์ บทความนี้เสนอแนะให้ครูเน้นลักษณะ 2 ประการนี้มากขึ้น ซึ่งจะทำให้นักเรียนเรียนรู้วิทยาศาสตร์ด้วยกระบวน การสืบเสาะที่แท้จริงยิ่งขึ้น

คำสำคัญ: วัฏจักร 5Es  การสืบเสาะทางวิทยาศาสตร์  การสืบเสาะที่มีทฤษฎีชี้นำ

 

Abstract

Thailand has promoted an inquiry–based approach to teaching and learning science for a long time. One way that has been widely supported is a 5Es cycle. While previous researches explain the limitation of teaching and learning in this way by pointing to teachers’ lack of understanding, this article aims at presenting another perspective that the 5Es cycle itself has some limitation that it does not explicitly reflect some important aspects of scientists’ knowledge construction (i.e., the roles of theory guiding inquiry processes and scientific argumentation). This article urges teacher to pay greater emphasis on these two aspects, so that students can learn sciences through more authentic inquiry processes.

Keywords: 5Es cycle, Scientific inquiry, Theory-directed inquiry


References


Abd-El-Khalick, F. Boujaoude, S., Duschl, P., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Nias, M., Treagust, D., and Tuan, H. (2014). Inquiry in science education: International perspectives. Science Education 88(3): 397–419.

Allen, M. (2014). Misconceptions in Primary Science. New York: Open University.

Bongkotphet, T. and Roadrangka, V. (2010). Sixth grade science teachers’ knowledge/ belief of inquiry-based astronomy teaching. Journal of Humanities and Social Sciences Mahasarakham University 29(3): 85–97. (in Thai)

Buaraphan, K. (2009). Thai in-service science teachers’ conceptions of the nature of science. Journal of Science and Mathematics Education in Southeast Asia 32(2): 188–217.

Bureau of Academic Affairs and Educational Standards. (2010). Indicators and Core Learning Content in Science According to the Basic Education Core Curriculum B.E. 2551. Bangkok: Agricultural Co-operative Federation of Thailand. (in Thai)

Bybee, R. W., Taylor, J. A., Gardner, A., Scot-ter, P. V., Powell, J. C., Wesbrook, A., and Landes, N. (2006). The BSCS 5E In-structional Models: Origins, Effectiveness, and Applications. Retrieved from https://www.bscs.org/sites/default/files/_legacy/BSCS_5E_Instructional_Model-Executive_Summary_0.pdf, November 22, 2016.

Faikhamta, C. (2009). Inquiry-based teaching and learning. Journal of Education Naresuan University 11(1): 31–45. (in Thai)

Faikhamta, C., and Ladachart, L. (2016). Science education in Thailand: Moving through crisis to opportunity. In Chiu, M-H. (Ed). Science Education Research and Practice in Asia. (pp. 197–214) Singapore: Springer.

Gilbert, J. K., and Boulter, C. J. (2000). Developing Models in Science Education. Dordrecht: Kluwer Academic.

Hofstein, A., Navon, O., Kipnis, M., and Mamlok-Naaman, R. (2005). Developing students’ ability to ask more and better questions: Resulting from inquiry-type chemistry laboratories. Journal of Research in Science Teaching 42(7): 791–806.

Ketsing, J., and Roadrangka, V. (2010). A case study of science teachers’ understanding and practice of inquiry-based instruction. Kasetsart Journal (Social Sciences) 31(1): 1–16. (in Thai)

Ketsing, J., and Roadrangka, V. (2011). Inquiry-based instruction for science teaching. Journal of Humanities and Social Sciences Mahasarakham University 30(1): 84–105. (in Thai)

Ladachart, L. and Chimphali, K., Aryowong, N., Ngaewkoodrua, N., Srakho, S., Wangead, C., and Thammaprateep, J. (2015). Ninth grade students’ making inferences and explanations. Silpakorn University Journal (Social Science, Humanities, and Art) 35(1): 171–206. (in Thai)

Ladachart, L. and Ladachart, L. (2016). Fifth grade students’ questioning about science. Journal of Humanities and Social Sciences Mahasarakham University 35(1): 188–202. (in Thai)

Ladachart, L., and Mahalee, K. (2016). Lower-secondary school students’ understandings about nature of scientific inquiry. Journal of Research Unit on Science, Technology and Environment for Learning 7(2): 298–324. (in Thai)

Ladachart, L., and Nashon, S. (2010). Alter-native frameworks in conceptions of sound: A historical evolution. International Journal of Education 33(2): 3–24.

Ladachart, L., and Suttakun, L. (2012). Exploring and developing tenth-grade stu-dents’ understandings of nature of science. Princess of Naradhivas University Journal 4(2): 73–90. (in Thai)

Ladachart, L., and Yuenyong, C. (2015). What Thai science teachers should learn from the Programme for International Student Assessment? Parichart Journal 28(2): 108–137. (in Thai)

Ladachart, L., Suttakun, L., and Faikhamta, C. (2013). A Critical difference between the promotion of “Nature of Science” instruction outside and inside Thailand. Kasetsart Journal (Social Sciences) 34(2): 269–282. (in Thai)

Lederman, J. S., Lederman, N. G., Bortos, S. A., Bartels, S. L., Meyer, A. A., and Sch-wartz, R. S. (2014). Meaningful assessment of learners’ understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Jour-nal of Research in Science Teaching 51(1): 65–83.

Liangkrilas, J., and Yutakom, N. (2010). Case study: Perception among biology teachers of an inquiry-based approach to teaching and teaching practices. Journal of Humanities and Social Sciences Mahasarakham University 29(4): 23–37. (in Thai)

Nareewong, A., and Chatwong, A. (2013). Eighth grade students’ explanations about vision. Retrieved from http://www. inquiringmind.in.th/documents/StudentExplanationsVision.pdf, November 22, 2016. (in Thai)

Organisation for Economic Co-operation and Development [OECD]. (2013). PISA 2015: Draft Science Framework. Retrieved from https://www.oecd.org/pisa/pisaproducts/ Draft%20PISA%202015%20Science%20 Framework%20.pdf, November 22, 2016.

Pongsophon, P. (2009). Teach science as science is. Science 63(1): 84–89. (in Thai)

Popper, K. (1998). Science: Conjecture and refutations. In Curd, M. and Cover, J. A. (Eds). Philosophy of Science: The Central Issues. (pp. 3–10). New York: W. W. Norton and Company.

Posner, G. J., Strike, K. A., Hewson, P. W., and Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education 66(2): 211–227.

Schwarz, C. V., and White, B. Y. (2005). Meta-modeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction 23(2): 165–205.

Suttakun, L., and Ladachart, L. (2013). Fourth grade students’ scientific reasoning. Naresuan University Journal: Science and Technology 21(3): 107–123. (in Thai)

Suttakun, L., Yutakom, N., and Vajarasathira, B. (2011). A case study of understanding of the nature of science by elementary teachers and their teaching practices. Kasetsart Journal (Social Sciences) 32(3): 458–469. (in Thai)

Thagard, P. R. (1978). The best explanation: Criteria for theory choice. The Journal of Philosophy 75(20): 76–92.

Thagard, P. R. (1992). Conceptual Revolutions. New Jersey: Princeton University.

Tongprapai, K., Pitiporntapin, S., Shinnasin, K., and Jamjai, O. (2016). Development of grade 8 students’ argumentation skill in nutrients and life unit using socio-scientific issue (SSI)–based teaching. Journal of Research Unit on Science, Technology, and Environment for Learning 7(1): 48–61. (in Thai)

Windschitl, M., Thompson, J., and Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education 92(5): 941–967.


Full Text: PDF