ความก้าวหน้าในการเรียนรู้วิทยาศาสตร์ (Learning Progressions in Science)

ลือชา ลดาชาติ

Abstract


บทคัดย่อ

บทความนี้มีวัตถุประสงค์เพื่อนำเสนอการวิจัยที่ศึกษาความก้าวหน้าในการเรียนรู้วิทยาศาสตร์ของผู้เรียน โดยเริ่มต้นด้วยการนำเสนอนิยามและกระบวนการพัฒนาความก้าวหน้าในการเรียนรู้วิทยา-ศาสตร์ อธิบายตัวอย่างงานวิจัยที่ศึกษาความก้าวหน้าในการเรียนรู้วิทยาศาสตร์เรื่องต่าง ๆ ทั้งความเข้าใจทางวิทยาศาสตร์และการปฏิบัติงานทางวิทยาศาสตร์ นำเสนอประโยชน์และความท้าทายของการวิจัยเกี่ยวกับความก้าวหน้าในการเรียนรู้วิทยาศาสตร์ และให้ข้อเสนอแนะเกี่ยวกับวิจัยด้านวิทยาศาสตร์ศึกษาในประเทศไทย

คำสำคัญ: ความก้าวหน้าในการเรียนรู้วิทยาศาสตร์  การวิจัยด้านการเรียนรู้วิทยาศาสตร์ วิทยาศาสตร์ศึกษา

Abstract

This article aims at presenting research on students' learning progressions in science. It begins with a definition of learning progressions in science and processes by which learning progressions in science are developed. Then, it exemplifies a variety of learning progressions in both scientific concepts and practices. Next, it discusses benefits and challenges of research on learning progressions in science. It also suggests for research on science education in Thailand.

Keywords: Learning progressions in science, Research on learning science, Science education


References


Black, P., Wilson, M., and Yao, S. (2011). Road maps for learning: A guide to the navigation of learning progression. Measurement 9(2–3): 71–123.

Buaraphan, K., Singh, P., and Roadrangka, V. (2006). Conceptual development of force and motion in their-year preservice teachers participating in constructivist learning activities. Songklanakarin Jour-nal of Social Sciences and Humanities 12(1): 97–119. (in Thai)

Bureau of Academic Affairs and Educational Standards. (2010). Indicators and Core Learning Content in Science According to the Basic Education Core Curriculum B.E. 2551. Bangkok: Press of the Agricultural Co-operative Federation of Thailand. (in Thai)

Calik, M., and Ayas, A. (2005).A Cross-age study on the understanding of chemical solutions and their components. International Education Journal 6(1): 30–41.

Campanario, J. M. (2002). The parallelism between scientists’ and students’ resistance to new scientific ideas. International Journal of Science Education 24(10): 1095–1110.

Clement, J. (1982).Students’ preconceptions in introductory mechanics. American Journal of Physics 50(1): 66–71.

Clement, J., and Zietsman, A. (1989). Not all preconceptions are misconceptions: Finding ‘anchoring conceptions’ for grounding instruction on students’ intuitions. International Journal of Science Education 11(special issue): S54–S65.

Corcoran, T., Mosher, F. A., and Roget, A. (2009). Learning Progressions in Science: An Evidence-Based Approach to Reform. New York: Columbia University, Center on Continuous Instructional Improvement Teachers College.

deSessa, A. A. (2002). Why “conceptual ecology” is a good idea. In Limon, M. and Mason, L. (Eds.). Reconsidering Conceptual Change: Issues in Theory and Practice, pp. 29–60. Netherlands: Academic Publishers.

Driver, R., Leach, J., Scott, P., and Wood-Robinson, V. (1994). Young people’s understanding of science concepts: implications of cross-age studies for curriculum planning. Studies in Science Education 24(1): 75–100.

Duit, R., and Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education 25(6): 671–688.

Duschl, R., Maeng, S., and Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education 47(2): 123–182.

Furtak, E. M. (2009). Toward Learning Progressions as Teacher Development Tools. Retrieved from http://www.education.msu.edu/projects/leaps, November 19, 2014.

Furtak, E. M., and Heredia, S. C. (2014). Ex-ploring the influence of learning progressions in two teacher communities. Journal of Research in Science Teaching 51(8): 982–1020.

Furtak, E. M., Moorison, D., and Kroog, H. (2014). Investigating the link between learning progressions and classroom assessment. Science Education 98(4): 640–673.

Gailli, I., Bendakk, S., and Goldberg, F. (1993). The effects of prior knowledge and instruction on understanding image for-mation. Journal of Research in Science Teaching, 30(3): 271–301.

Gonen, S. and Kocakaya, S. (2010). A cross-age study on the understanding of heat and temperature. Eurasian Journal of Physics and Chemistry Education 2(1): 1–15.

Gunckel, K. L., Covitt, B. A., Salinas, I., and Anderson, C. W. (2012). A learning progression for water in socio-ecological systems. Journal of Research in Science Teaching, 49(7): 843–868.

Hammer, D. (1995). Epistemological conideration in teaching introductory physics. Science Education 79(4): 393–413.

Hutchison, P. and Hammer, D. (2010). At-tending to student epistemological framing in a science classroom. Science Education 94(3): 506–524.

Jituafua, A., Techapinyawat, S., Pongsophon, P., and Srita, S. (2010). Investigate grade 12 students’ preconceptions in the topic of plant responses. Songklanakarin Journal of Social Sciences and Humanities 16(4): 629–642. (in Thai)

Kennedy, C. A., and Wilson, M. (2007). Using Progress Variables to Interpret Student Achievement and Progress (BEAR Technical Report No. 2006-12-01). Retrieved from https://bearcenter.berkeley.edu/sites/default/files/Kennedy_Wilson2007.pdf, December 14, 2015.

Krajcik, J. (2011). Learning progressions provide road maps for the development and validity of assessments and curriculum materials. Measurement, 9(2–3): 155–158.

Larkin, D. (2012). Misconceptions about “misconceptions”: Preservice secondary science teachers’ views on the value and role of student ideas. Science Education 96(5): 927–959.

Ministry of Education. (1999). National Education Act B. E. 2542. Retrieved from http://www.moe.go.th/main2/plan/p-r-b4 2-01.htm, November 19, 2014. (in Thai)

Muangramun, R., and Pitiporntapin, S. (2013). Enhancing grade 8th students’ under-standing of scientific concept in topic of “our earth” using model-based learning. Journal of Research Unit on Science, Technology and Environment for Learning 4(1): 38–45. (in Thai)

National Research Council [NRC]. (2007). Taking Science to School: Learning and Teaching Science in Grades K – 8. Washington, D.C.: The National Academics Press.

Neumann, K., Viering, T., Boone, W. J., and Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2): 162–188.

Pfundt, H., and Duit, R. (2009). Bibliography – STCSE: Students’ and Teachers’ Conceptions and Science Education. Re-trieved from http://archiv.ipn.uni-ki el.de/stcse/, November 18, 2014.

Piaget, J. (1930). The Child’s Conception of Physical Causality. London: Routledge.

Plummer, J. D., and Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an earth-based perspective. Journal of Research in Science Teaching 47(7): 768–787.

Plummer, J. D., and Maynard, L. (2014). Building a learning progression for celestial motion: An exploration of students’ reasoning about the seasons. Journal of Research in Science Teaching 51(7): 902–929.

Plummer, J. D., and Slagle, C. (2009). A Learning Progression Approach to Teacher Professional Development in Astronomy. Retrieved from http://www.education.msu.edu/projects/leaps, November 19, 2014.

Pongsophon, P., Jantrarotai, P., and Roadrangka, V. (2003). Perspectives of Thai students in grade 9-12 on evolutionary concepts. Kasetsart Journal (Social Sciences) 24(1): 1–14. (in Thai)

Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y., Hug, B., and Karjcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching 46(6): 632–654.

Shea, N. A., and Duncan, R. G. (2013). From theory to data: The process of refining learning progressions. Journal of the Learning Sciences 22(1): 7–32.

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review 57(1): 1–23.

Smith, J. P., diSessa, A. A., and Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences 3(2): 115–163.

Smith, C. L., Wiser, M., Anderson, C. W., and Krajcik, J. (2006). Implications of re-search for standards and assessment: A proposed learning progression for matter and the atomic-molecular theory. Measurement: Interdisciplinary Research and Perspectives 14(1& 2): 1–98.

Songer, N. B., Kelcey, B., and Gotwals, A. W. (2009). How and when does complex reasoning occur? Empirical driven development of a learning progression focused on complex reasoning and biodiversity. Journal of Research in Science Teaching 46(6): 610–631.

Stevens, S. Y., Delgado, C., and Krajcik, J. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching 47(6): 687–715.

Suttakun, L., and Ladachart, L. (2013). Fourth grade students’ scientific reasoning. Naresuan University Journal: Science and Technology 21(3): 107–123. (in Thai)

Tipjoi, W. and Narjaikaew, P. (2013). The Effect of short-course training program on scientific concepts of the primary school non-science teacher. Journal of Research Unit on Science, Technology and Environment for Learning 4(2): 143–156. (in Thai)

Trumper, R. (2001). A Cross-age study of senior high school students’ conceptions of basic astronomy concepts. Research in Science and Technological Education 19(1): 98–109.

Viiri, J. (2000). Students’ understanding of tides. Physics Education 35(2): 105–110.

Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction 4(1): 45–69.

Wiser, M., Smith, C. L., Doubler, S., and Asbell-Clark, J. (2009). Learning Progressions as Tools for Curriculum Development: Lessons from the Inquiry Project. Retrieved from http://education.msu.edu/projects/leaps, November 19, 2014.


Full Text: PDF